Skip to main content
Log in

Modification of Structural-Textural Properties of Sulfide Minerals at Polymetallic Concentrate Leaching with Sulfuric Acid and Hydrogen Peroxide Solutions

  • MINERAL PROCESSING OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

This paper examines the effects of structural-textural characteristics of sulfide minerals on their leaching from polymetallic concentrates with sulfuric acid and hydrogen peroxide solutions. The polymetallic concentrate was obtained by flotation of polymetallic ore from the Rudnik deposit in Serbia. X-ray diffraction (XRD), qualitative and quantitative mineralogical, scanning electron microscopy (SEM/EDX), and chemical analyses were used to characterize the polymetallic concentrate and leach residue. The polymetallic concentrate contained chalcopyrite, galena, sphalerite, pyrrhotite, and quartz. The total content of sulfide minerals was 69.5%, and the occurrence of free sulfide mineral grains was about 60.9%. The comprehensive thermodynamic analysis was done by HSC Chemistry® package 9.9.2.3 to determine optimal experimental leaching conditions. Chalcopyrite, sphalerite, and pyrrhotite oxidized during leaching, and dissolution occurred. The oxidized galena remains in the solid residual as insoluble anglesite. Also, elemental sulfur and unleached minerals of copper, zinc, and iron were found in the leach residues. It was found that the structural assembly of sulfide minerals in the leach residue is very favorable and that undissolved sulfide grains are primarily present in free form. Accordingly, there was no reason to reduce the leaching rate with time. The presence of elemental sulfur and anglesite formed in the leaching process and precipitated on the surface of mineral grains was confirmed by XRD, quantitative and qualitative mineralogical analysis, and SEM/EDX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Vračar, R., Šaljić, L., Sokić, M., Matković, V., and Radosavljević, S., Chemical-technological processing of the complex barite-sulphide ore, Scand. J. Metall., 2003, vol. 32, no. 6, pp. 289–295.

    Article  Google Scholar 

  2. Antonijević, M., Janković, Z., and Dimitrijević, M., Kinetics of chalcopyrite dissolution by hydrogen peroxide in sulphuric acid, Hydrometallurgy, 2004, vol. 71, nos. 3–4, pp. 329–334.

    Article  Google Scholar 

  3. Habashi, F.A., Textbook of Hydrometallurgy, Quebec: Metallurgie Extractive Quebec, 1999.

    Google Scholar 

  4. Watling, H.R., Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options, Hydrometallurgy, 2013, vol. 140, pp. 163–180.

    Article  CAS  Google Scholar 

  5. Watling, H.R., Chalcopyrite hydrometallurgy at atmospheric pressure: 2. Review of acidic chloride process options, Hydrometallurgy, 2014, vol. 146, pp. 96–110.

    Article  CAS  Google Scholar 

  6. Bogdanović, G., Petrović, S., Sokić, M., and Antonijević, M., Chalcopyrite leaching in acid media: a review, Metall. Mater. Eng., 2020, vol. 26, no. 2, pp. 177–198.

    Article  Google Scholar 

  7. Dutrizac, J.E., The dissolution of chalcopyrite in ferric sulphate and ferric chloride media, Metall. Mater. Trans. B, 1981, vol. 12, pp. 371–378.

    Article  Google Scholar 

  8. Veloso, T., Peixoto, J., Pereira, M., and Leao, V., Kinetics of chalcopyrite leaching in either ferric sulphate or cupric sulphate media in presence of NaCl, Int. J. Miner. Process., 2016, vol. 148, pp. 147–154.

    Article  CAS  Google Scholar 

  9. Cordoba, E.M., Munoz, J.A., Blazquez, M.L., Gonzalez, F., and Ballester, A., Leaching of chalcopyrite with ferric iron: Part I: general aspects, Hydrometallurgy, 2008, vol. 93, nos. 3–4, pp. 81–87.

    Article  CAS  Google Scholar 

  10. Sokić, M., Matković, V., Marković, B., Manojlović, V., Štrbac, N., Živković, D., and Kamberović, Ž., Complex sulphide-barite ore leaching in ferric chloride solution, Metall. Mater. Eng., 2016, vol. 22, no. 2, pp. 81–89.

    Article  Google Scholar 

  11. Shiers, D.W., Collinson, D.M., Kelly, N.J., and Watling, H.R., Copper extraction from chalcopyrite: Comparison of three non-sulfate oxidants, hypochlorous acid, sodium chlorate and potassium nitrate, with ferric sulfate, Miner. Eng., 2016, vol. 85, pp. 55–65.

    Article  CAS  Google Scholar 

  12. Nikoloski, A.N. and O’Malley, G.P., The acidic ferric sulfate leaching of primary copper sulphides under recycle solution conditions observed in heap leaching. Part 1. Effect of standard conditions, Hydrometallurgy, 2018, vol. 178, pp. 231–239.

    Article  CAS  Google Scholar 

  13. Wang, J., Faraji, F., and Ghahreman A., Effect of ultrasound on the oxidative copper leaching from chalcopyrite in acidic ferric sulfate media, Minerals, 2020, vol. 10, no. 7, p. 633.

    Article  CAS  Google Scholar 

  14. Torres, C.M., Ghorbani, Y., Hernández, P.C., Justel, F.J., Aravena, M.I., and Herreros, O.O., Cupric and chloride ions: leaching of chalcopyrite concentrate with low chloride concentration media, Minerals, 2019, vol. 9, no. 10, p. 639.

    Article  CAS  Google Scholar 

  15. Lundstrom, M., Aromaa, J., Forsen, O., Hyvarinen, O., and Barker, M.H., Leaching of chalcopyrite in cupric chloride solution, Hydrometallurgy, 2005, vol. 77, pp. 89–95.

    Article  Google Scholar 

  16. Cháidez, J., Parga, J., Valenzuela, J., Carrillo, R., and Almaguer, I., Leaching chalcopyrite concentrate with oxygen and sulfuric acid using a low-pressure reactor, Metals, 2019, vol. 9, no. 2, p. 189.

    Article  Google Scholar 

  17. McDonald, R.G. and Muir, D.M., Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products, Hydrometallurgy, 2007, vol. 86, pp. 191–205.

    Article  CAS  Google Scholar 

  18. Akcil, A. and Ciftci, H., Metals recovery from multimetal sulphide concentrates (CuFeS2–PbS–ZnS): combination of thermal process and pressure leaching, Int. J. Miner. Process., 2003, vol. 71, nos. 1–4, pp. 233–246.

    Article  CAS  Google Scholar 

  19. Kamberović, Ž., Sokić, M., and Korać, M., On the physicochemical problems of aqueous oxidation of polymetallic gold bearing sulphide ore in an autoclave, Physicochem. Probl. Miner. Process., 2003, vol. 37, no. 1, pp. 107–114.

    Google Scholar 

  20. Sokić, M., Marković, B., Matković, V., Živković, D., Štrbac, N., and Stojanović, J., Kinetics and mechanism of sphalerite leaching by sodium nitrate in sulphuric acid solution, J. Min. Metall., Sect. B, 2012, vol. 48, no. 2, pp. 185–195.

    Google Scholar 

  21. Sokić, M., Marković, B., and Živković, D., Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid, Hydrometallurgy, 2009, vol. 95, pp. 273–279.

    Article  Google Scholar 

  22. Castellón, C.I., Hernández, P.C., Velásquez-Yévenes, L., and Taboada, M.E., An alternative process for leaching chalcopyrite concentrate in nitrate-acid-seawater media with oxidant recovery, Metals, 2020, vol. 10, no. 4, p. 518.

    Article  Google Scholar 

  23. Hernández, P., Dorador, A., Martínez, M., Toro, N., Castillo, J., and Ghorbani, Y., Use of seawater/brine and caliche’s salts as clean and environmentally friendly sources of chloride and nitrate ions for chalcopyrite concentrate leaching, Minerals, 2020, vol. 10, no. 5, p. 477.

    Article  Google Scholar 

  24. Anderson, C.G., Treatment of copper ores and concentrates with industrial nitrogen species catalyzed pressure leaching and non-cyanide precious metal recovery, JOMMER, 2003, vol. 55, no. 4, pp. 32–36.

    CAS  Google Scholar 

  25. Gok, O. and Anderson, C.G., Dissolution of low-grade chalcopyrite concentrate in acidified nitrite electrolyte, Hydrometallurgy, 2013, vols. 134–135, pp. 40–46.

    Article  Google Scholar 

  26. Havlik, T., Laubertova, M., Miskufova, A., Kondas, and J., Vranka, F., Extraction of copper, zinc, nickel and cobalt in acid oxidative leaching of chalcopyrite at the presence of deep-sea manganese nodules as oxidant, Hydrometallurgy, 2005, vol. 77, pp. 51–59.

    Article  CAS  Google Scholar 

  27. Toro, N., Pérez, K., Saldaña, M., Jeldres, R.I., Jeldres, M., and Cánovas, M., Dissolution of pure chalcopyrite with manganese nodules and waste water, J. Mater. Res. Technol., 2020, vol. 9, no. 1, pp. 798–805.

    Article  CAS  Google Scholar 

  28. Torres, D., Ayala, L., Jeldres, R.I., Cerecedo-Sáenz, E., Salinas Rodríguez, E., Robles, P., and Toro, N., Leaching chalcopyrite with high MnO2 and chloride concentrations, Metals, 2020, vol. 10, no. 1, p. 107.

    Article  CAS  Google Scholar 

  29. Aydogan, S., Ucar, G., and Canbazoglu, M., Dissolution kinetiks of chalcopyrite in acidic potassium dichromate solution, Hydrometallurgy, 2006, no. 81, pp. 45–51.

  30. Carillo Pedroza, F.R., Sanchez-Castillo, M.A., Soria-Aguilar, M.J., Martinez-Luevanos, A., and Gutierrez, E.C., Evaluation of acid leaching of low grade chalcopyrite using ozone by statistical analysis, Can. Metall. Q., 2010, vol. 49, no. 3, pp. 219–226.

    Article  Google Scholar 

  31. Pradhan, N., Nathsarma, K.C., Srinivasa Rao, K., Sukla, L.B., and Mishra, B.K., Heap bioleaching of chalcopyrite: a review, Miner. Eng., 2008, vol. 21, no. 5, pp. 355–365.

    Article  CAS  Google Scholar 

  32. Zhang, R., Sun, C., Kou, J., Zhao, H., Wei, D., and Xing, Y., Enhancing the leaching of chalcopyrite using Acidithiobacillus ferooidans under the induction of surfactant Triton X-100, Minerals, 2019, vol. 9, no. 1, p. 11.

    Article  CAS  Google Scholar 

  33. Conić, V., Stanković, S., Marković, B., Božić, D., Stojanović, J., and Sokić, M., Investigation of the optimal technology for copper leaching from old flotation tailings of the copper mine Bor (Serbia), Metall. Mater. Eng., 2020, vol. 26, no. 2, pp. 209–222.

    Article  Google Scholar 

  34. Martins, F.L., Patto, G.B., and Leão, V.A., Chalcopyrite bioleaching in the presence of high chloride concentrations, J. Chem. Technol. Biotechnol., 2019, vol. 94, no. 7, pp. 2333–2344.

    CAS  Google Scholar 

  35. Adebayo, A.O., Ipinmorti, K.O., and Ajayi, O.O., Dissolution kinetics of chlacopyrite with hydrogen peroxide in sulphuric acid medium, Chem. Biochem. Eng. Q., 2003, vol. 17, no. 3, pp. 213–218.

    CAS  Google Scholar 

  36. Lin, H.K. and Luong, H.V., Column leaching for simultaneous heap and in-situ soil remediation with metallic Fenton reaction, J. Miner. Mater. Charact. Eng., 2004, vol. 3, no. 1, pp. 33–39.

    Google Scholar 

  37. Misra, M. and Fuerstenau, M.C., Chalcopyrite leaching at moderate temperature and ambient pressure in the presence of nanosize silica, Miner. Eng., 2005, vol. 18, no. 3, pp. 293–297.

    Article  CAS  Google Scholar 

  38. Turan, M.D. and Altundogan, H.S., Leaching of chalcopyrite concentrate with hydrogen peroxide and sulfuric acid in an autoclave system, Metall. Mater. Trans. B, 2013, vol. 44, pp. 809–819.

    Article  CAS  Google Scholar 

  39. Sokić, M., Marković, B., Stanković, S., Kamberović, Ž., Štrbac, N., Manojlović, V., and Petronijević, N., Kinetics of chalcopyrite leaching by hydrogen peroxide in sulfuric acid, Metals, 2019, vol. 9, no. 11, p. 1173.

    Article  Google Scholar 

  40. Agacayak, T., Aras, A., Aydogan, S., and Erdemoglu, M., Leaching of chalcopyrite concentrate in hydrogen peroxide solution, Physicochem. Probl. Miner. Process., 2014, vol. 50, no. 2, pp. 657–666.

    CAS  Google Scholar 

  41. Olubambi, P.A., Borode, J.O., and Ndlovu, S., Sulphuric acid leaching of zinc and copper Nigerian Complex Sulphide ore in the presence of hydrogen peroxide, J. South. Afr. Inst. Min. Metall., 2006, vol. 106, pp. 765–770.

    Google Scholar 

  42. Olubambi, P.A. and Potgieter, J.H., Investigations on the mechanisms of sulfuric acid leaching of chalcopyrite in the presence of hydrogen peroxide, Miner. Process. Extr. Metall. Rev., 2009, vol. 30, no. 4, pp. 327–345.

    Article  CAS  Google Scholar 

  43. Mahajan, V., Misra, M., Zhong, K., and Fuerstenau, M.C., Enhanced leaching of copper from chalcopyrite in hydrogen peroxide-glycol system, Miner. Eng., 2007, vol. 20, pp. 670–674.

    Article  CAS  Google Scholar 

  44. Petrović, S.J., Bogdanović, G.D., and Antonijević, M.M., Leaching of chalcopyrite with hydrogen peroxide in hydrochloric acid solution, Trans. Nonferrous Met. Soc. China, 2018, vol. 28, no. 7, pp. 1444–1455.

    Article  Google Scholar 

  45. Ahn, J., Wu, J., and Lee, J., Investigation on chalcopyrite leaching with methanesulfonic acid (MSA) and hydrogen peroxide, Hydrometallurgy, 2019, vol. 187, pp. 54–62.

    Article  CAS  Google Scholar 

  46. Ruiz-Sanchez, A. and Lapidus, G.T., Study of chalcopyrite leaching from a copper concentrate with hydrogen peroxide in aqueous ethylene glycol media, Hydrometallurgy, 2017, vol. 169, pp. 192–200.

    Article  CAS  Google Scholar 

  47. Štrbac, N., Sokić, M., Marković, B., Živković, D., Kamberović, Ž., and Matković, V., Environmentally friendly polymetallic sulphide concentrate treatment by leaching in hydrogen peroxide and sulfuric acid solution, Proc. 5th Int. Conference on Environmental and Material Flow Management “EMFM 2015”, Zenica, November 5–7, 2015, pp. 184–190.

  48. Sokić, M., Milošević, V., Stanković, V., Matković, V., and Marković, B., Acid leaching of oxide-sulphide copper ore prior the flotation—A way for an increased metal recovery, Hem. Ind., 2015, vol. 69, no. 5, pp. 453–458.

    Article  Google Scholar 

  49. Roine, A., HSC Chemistry® v 9 Software, Pori: Outotec Research Oy Center, 2016.

    Google Scholar 

  50. Sokić, M., Radosavljević, S., Marković, B., Matković, V., Štrbac, N., Kamberović, Ž., and Živković, D., Influence of chalcopyrite structure on their leaching by sodium nitrate in sulphuric acid, Metall. Mater. Eng., 2014, vol. 20, no. 1, pp. 53–60.

    Article  Google Scholar 

  51. Radosavljević-Mihajlović, A.S., Stojanović, J.N., Radosavljević, S.A., Pačevski, A.M., Vuković, N.S., and Tošović, R.D., Mineralogy and genetic features of the Cu–As–Ni–Sb–Pb mineralization from the Mlakva polymetallic deposit (Serbia)—New occurrence of (Ni–Sb)-bearing Cu-arsenides, Ore Geol. Rev., 2017, vol. 80, pp. 1245–1258.

    Article  Google Scholar 

  52. Stojanović, J.N., Radosavljević-Mihajlović, A.S., Radosavljević, S.A., Vuković, N.S., and Pačevski, A.M., Mineralogy and genetic characteristics of the Rudnik Pb–Zn/Cu, Ag, Bi, W polymetallic deposit (Central Serbia)—New occurrence of Pb(Ag)Bi sulfosalts, Period. Mineral., 2016, vol. 85, no. 2, pp. 7–21.

    Google Scholar 

  53. Sokić, M., Stojanović, J., Marković, B., Bugarčić, M., Štrbac, N., Kamberović, Ž., and Manojlović, V., Effects of structural and textural grain characteristics on leaching of sulphide minerals from a polymetallic concentrate by sodium nitrate and sulphuric acid solution, Hem. Ind., 2017, vol. 71, no. 6, pp. 461–469.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research presented in this paper was done with the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia, within the funding of the scientific research work at the ITNMS and TMF, according to the contract with registration nos. 451-03-68/2022-14/200023 and 451-03-68/2022-14/200135.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miroslav Sokić, Jovica Stojanović, Branislav Marković, Željko Kamberović, Nataša Gajić, Ana Radosavljević-Mihajlović or Dušan Milojkov.

Ethics declarations

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokić, M., Stojanović, J., Marković, B. et al. Modification of Structural-Textural Properties of Sulfide Minerals at Polymetallic Concentrate Leaching with Sulfuric Acid and Hydrogen Peroxide Solutions. Russ. J. Non-ferrous Metals 63, 457–472 (2022). https://doi.org/10.3103/S1067821222050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222050091

Keywords:

Navigation