Skip to main content
Log in

Effect of the Heat Treatment Process on the Properties of SiCp/AL Composites

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

In this study, the effects of different treatments (annealing, solid solution and Solution + aging) on the bending and thermal conductivity of SiCp/Al composites fabricated by the pressure infiltration method were investigated. The fracture form of the composites was indicated to be characteristic brittle fracture with local ductile fracture. The bending strength of the composites was 674 MPa with Solution + aging, which is 57% higher than that in the as-cast condition. The microhardnesses of the composites increased after heat treatment, resulting in the maximum microhardness 276 HV with Solution + aging. By calculating the thermal conductivity of the composites, the order was determined to be cast < annealed < solid solution < solution + aging, and the thermal conductivity with solution + aging treatment reached 182 m–1 K–1, which is higher than 153 m–1 K–1 in the as-cast condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Lloyd, D.J., Lagace, H., McLeod, A., et al., Microstructural aspects of aluminium-silicon carbide particulate composites produced by a casting method, Mater. Sci. Eng., A, 1989, vol. 107, pp. 73–80.

    Article  Google Scholar 

  2. Arsenault, R.J. and Fisher, R.M., Microstructure of fiber and particulate SiC in 6061 Al composites, Scr. Metall., 1983, vol. 17, no. 1, pp. 67–71.

    Article  CAS  Google Scholar 

  3. Ghasali, E., Yazdani-rad, R., Asadian, K., et al., Production of Al–SiC–TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods, J. Alloys Compd., 2017, vol. 690, pp. 512–518.

    Article  CAS  Google Scholar 

  4. Xie, J., Wang, S., Guo, C., et al., Construction of novel plate-shaped 4H–SiC network skeleton for enhancing 3D-interpenetrated network structure SiC/Al composites, Ceram. Int., 2022, vol. 48, no. 7, pp. 10251–10260.

    Article  CAS  Google Scholar 

  5. Chen, M., Bai, Y., Zhang, Z., et al., The preparation of high-volume fraction SiC/Al composites with high thermal conductivity by vacuum pressure infiltration, Crystals, 2021, vol. 11, no. 5, p. 515.

    Article  Google Scholar 

  6. Yixiong, L., Zhenxing, Z., Dezhi, Z., et al., Effect of heat treatment on microstructure and properties of SiCp/7075Al composites, J. Mater. Heat Treat., 2018, vol. 39, no. 9, pp. 1–6.

    Google Scholar 

  7. Ekici, R., Kosedag, E., and Demir, M., Repeated low-velocity impact responses of SiC particle reinforced Al metal-matrix composites, Ceram. Int., 2022, vol. 48, no. 4, pp. 5338–5351.

    Article  CAS  Google Scholar 

  8. Dong, Z., Pei, J., Chen, M., et al., Microstructure and property of carbon nanotube reinforced aluminum-matrix composites prepared by powder metallurgy combined with hot-rolling, Heat Treat., 2015, vol. 30, no. 5, pp. 6–10.

    CAS  Google Scholar 

  9. Yongkang, L. and Yingyuan, Z., Current research status of particle reinforced aluminum matrix composites, Mater. Dev. Appl., 1997, vol. 12, no. 5, pp. 33–39.

    Google Scholar 

  10. Taolin, Y. and Chen Yue, Research progress of particle reinforced metal matrix composites, Cast. Technol., 2006, vol. 27, no. 8, pp. 871–873.

    Google Scholar 

  11. Ziyang, X., Qiang, Z., Ziming, W., et al., Preparation and properties of Si Cp/6063 composite materials for electronic packaging, Precis. Form. Eng., 2018, no. 1, pp. 91–96.

  12. Mandal, D. and Viswanathan, S., Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite, Mater. Charact., 2013, vol. 85, pp. 73–81.

    Article  CAS  Google Scholar 

  13. Liu, Q., Wang, F., Qiu, X., et al., Effects of La and Ce on microstructure and properties of SiC/Al composites, Ceram. Int., 2020, vol. 46, no. 1, pp. 1232–1235.

    Article  CAS  Google Scholar 

  14. Shim, H.B., Seo, M.K., and Park, S.J., Thermal conductivity and mechanical properties of various cross-section types carbon fiber-reinforced composites, J. Mater. Sci., 2002, vol. 37, no. 9, pp. 1881–1885.

    Article  CAS  Google Scholar 

  15. Davis, L.C. and Artz, B.E., Thermal conductivity of metal-matrix composites, J. Appl. Phys., 1995, vol. 77, no. 10, pp. 4954–4960.

    Article  CAS  Google Scholar 

  16. Swamy, N.R.P., Ramesh, C.S., and Chandrashekar, T., Effect of heat treatment on strength and abrasive wear behaviour of Al6061-SiCp composites, Bull. Mater. Sci., 2010, vol. 33, no. 1, pp. 49–54.

    Article  CAS  Google Scholar 

  17. Shin, S., Cho, S., Lee, D., et al., Microstructural evolution and strengthening mechanism of SiC/Al composites fabricated by a liquid-pressing process and heat treatment, Materials, 2019, vol. 12, no. 20, p. 3374.

    Article  CAS  Google Scholar 

  18. Wang, Y., Zuo, X., Ran, S., et al., Effects of semi-solid extrusion and heat treatment on the microstructure, mechanics, and wear resistance of SiC/High aluminum zinc-base alloy composites, Mod. Phys. Lett. B, 2020, vol. 34, no. 25, p. 2050261.

    Article  CAS  Google Scholar 

  19. Yuan, W. and An, B., Effect of heat treatment on microstructure and mechanical property of extruded 7090/SiCp composite, Trans. Nonferrous Met. Soc. China, 2012, vol. 22, no. 9, pp. 2080–2086.

    Article  CAS  Google Scholar 

  20. El-Kady, O. and Fathy, A., Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites, Mater. Des. (1980–2015), 2014, vol. 54, pp. 348–353.

  21. Dong, L., Mi, G., Li, C., et al., Effects of SiC particle volume fraction on microstructure and mechanical properties of SiCp/6061Al composites, Integr. Ferroelectr., 2020, vol. 210, no. 1, pp. 215–226.

    Article  CAS  Google Scholar 

  22. Davis, J.R., Aluminum and Aluminum Alloys, ASM Int., 1993.

    Google Scholar 

  23. Zhipeng, L., Microstructure and Properties of High Temperature CNTs Reinforced AZ91 Magnesium Matrix Composites, Nanchang Univ., 2018.

    Google Scholar 

  24. Arsenault, R.J. and Shi, N., Dislocation generation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng., 1986, vol. 81, pp. 175–187.

    Article  CAS  Google Scholar 

  25. Gatea, S., Ou, H., and McCartney, G., Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments, Mater. Charact., 2018, vol. 142, pp. 365–376.

    Article  CAS  Google Scholar 

  26. Molina, J.M., Narciso, J., Weber, L., et al., Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution, Mater. Sci. Eng., A, 2008, vol. 480, nos. 1–2, pp. 483–488.

    Article  Google Scholar 

  27. Moradi, M.M., Aval, H.J., Jamaati, R., et al., Effect of SiC nanoparticles on the microstructure and texture of friction stir welded AA2024/AA6061, Mater. Charact., 2019, vol. 152, pp. 169–179.

    Article  CAS  Google Scholar 

  28. Yang, R., Zhang, Z., Zhao, Y., et al., Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites, Mater. Charact., 2015, 106, pp. 62–69.

    Article  CAS  Google Scholar 

  29. Arsenault, R.J. and Shi, N., Dislocation generation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng., 1986, vol. 81, pp. 175–187.

    Article  CAS  Google Scholar 

  30. Mohamadigangaraj, J., Nourouzi, S., and Aval, H.J., The effect of heat treatment and cooling conditions on friction stir processing of A390–10 wt% SiC aluminium matrix composite, Mater. Chem. Phys., 2021, vol. 263, p. 124423.

    Article  CAS  Google Scholar 

  31. Warrier, S.G., Gundel, D.B., Majumdar, B.S., et al., Interface effects on transversely loaded single-fiber SCS-6/Ti–6Al–4V, Mater. Trans. A, 1996, vol. 27, pp. 2035–2043.

    Article  Google Scholar 

  32. Wang, Y., Fengyun, Y., Jing, K., et al., Effect of particle morphology and heat treatment on properties of SiCp/2024Al composites, Spec. Cast. Nonferrous Alloys, 2019, vol. 39, no. 7, pp. 765–770.

    Google Scholar 

  33. Liu, Q., Wang, F., Shen, W., et al., Influence of interface thermal resistance on thermal conductivity of SiC/Al composites, Ceram. Int., 2019, vol. 45, no. 17, pp. 23815–23819.

    Article  CAS  Google Scholar 

  34. Kuchariková, L., Tillová, E., Chalupová, M., et al., Investigation on microstructural and hardness evaluation in heat-treated and as-cast state of secondary AlSiMg cast alloys, Mater. Today: Proc., 2020, vol. 32, pp. 63–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yin.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B., Meng, F., Wang, L. et al. Effect of the Heat Treatment Process on the Properties of SiCp/AL Composites. Russ. J. Non-ferrous Metals 63, 551–559 (2022). https://doi.org/10.3103/S1067821222050121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222050121

Keywords:

Navigation