Skip to main content
Log in

Joining Cu30Zn (Brass) and AA6063 Alloys Using the Mechanical Locking Method

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Different types of materials with unique performance are used together in the industry, and soluble and/or insoluble joining methods are applied to join these materials. However, the joining process is quite problematic due to the technological drawbacks that arise during the joining of materials with distinctive characteristics. For this reason, mechanical locking (frictional) joining method is recommended to reduce some of the problems emerging during the joining of different materials. Various material groups such as ferrous and non-ferrous metals could be able joined by the mechanical locking method (MLM). In this study, to the main aim is to determine the effect of rotation speed, which is one of the influential process parameters, on the process of joining CuZn30 (brass) and AA6063 aluminum alloy materials using MLM. The mechanical properties and microstructures of the specimens joined by applying different rotation speeds were examined. Consequentially CuZn30 and AA6063 materials were successfully joined using the MLM and the number of rotation speeds applied during joining had a significant effect on the joining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Martinsen, K., Hu, S.J., and Carlson, B.E., Joining of dissimilar materials, CIRP Ann. – Manuf. Technol., 2015, vol. 64, pp. 679–699. https://doi.org/10.1016/j.cirp.2015.05.006

    Article  Google Scholar 

  2. Kumar, N., Yuan, W., and Mishra, R.S., Friction Stir Welding of Dissimilar Alloys and Materials, Elsevier, 2015.

    Google Scholar 

  3. Manladan, S.M., Yusof, F., Ramesh, S., and Fadzil, M., A review on resistance spot welding of aluminum alloys, Int. J. Adv. Manuf. Technol., 2016, pp. 1805–1825. https://doi.org/10.1007/s00170-016-9225-9

  4. Fei, X., Ye, Y., Jin, L., Wang, H., and Lv, S., Special welding parameters study on Cu/Al joint in laser-heated friction stir welding, J. Mater. Process. Technol., 2018, vol. 256, pp. 160–171. https://doi.org/10.1016/j.jmatprotec.2018.02.004

    Article  CAS  Google Scholar 

  5. Siddharth, S. and Senthilkumar, T., Optimization of friction stir spot welding process parameters of dissimilar Al 5083 and C 10100 joints using response surface methodology, Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 5, pp. 456–466. https://doi.org/10.3103/S1067821216050151

    Article  Google Scholar 

  6. Shabani, M.O. and Mazahery, A., Automotive copper and magnesium containing cast aluminium alloys: Report on the correlation between yttrium modified microstructure and mechanical properties, Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 5, pp. 436–442. https://doi.org/10.3103/S1067821214050150

    Article  Google Scholar 

  7. Lipowsky, H. and Arpaci, E., Copper in the Automotive Industry, Wiley-VCH, 2007.

    Google Scholar 

  8. Saeid, T., Abdollah-zadeh, A., and Sazgari B., Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding, J. Alloys Compd., 2010, vol. 490, pp. 652–655. https://doi.org/10.1016/j.jallcom.2009.10.127

    Article  CAS  Google Scholar 

  9. Fei, X., Jin, X., Ye, Y., et al., Effect of pre-hole offset on the property of the joint during laser-assisted friction stir welding of dissimilar metals steel and aluminum alloys, Mater. Sci. Eng., A, 2016, vol. 653, pp. 643–652. https://doi.org/10.1016/j.msea.2015.11.101

    Article  CAS  Google Scholar 

  10. Rao, K.S., Reddy, G.M., and Rao, K.P., Studies on partially melted zone in aluminium–copper alloy welds—effect of techniques and prior thermal temper, Mater. Sci. Eng., A, 2005, vol. 403, pp. 69–76. https://doi.org/10.1016/j.msea.2005.04.041

    Article  CAS  Google Scholar 

  11. Mai, T.A. and Spowage, A.C., Characterization of dissimilar joints in laser welding of steel-kovar, copper-steel and copper–aluminium, Mater. Sci. Eng., A, 2004, vol. 374, no. 1, pp. 224–233. https://doi.org/10.1016/j.msea.2004.02.025

    Article  CAS  Google Scholar 

  12. Ouyang, J., Yarrapareddy, E., and Kovacevic, R., Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper, J. Mater. Process. Technol., 2006, vol. 172, pp. 110–122. https://doi.org/10.1016/j.jmatprotec.2005.09.013

    Article  CAS  Google Scholar 

  13. Bergmann, J.P., Petzoldt, F., Schürer, R., and Schneider, S., Solid-state welding of aluminum to copper—case studies, Weld. World, 2013, vol. 57, pp. 541–550. https://doi.org/10.1007/s40194-013-0049-z

    Article  CAS  Google Scholar 

  14. Beygi, R., Mehrizi, M.Z., Verdera, D., and Loureiro, A., Influence of tool geometry on material flow and mechanical properties of friction stir welded Al–Cu bimetals, J. Mater. Process. Technol., 2018, vol. 255, pp. 739–748. https://doi.org/10.1016/j.jmatprotec.2018.01.033

    Article  CAS  Google Scholar 

  15. Galvão, I., Oliveira, J., Loureiro, A., and Rodrigues, D., Formation and distribution of brittle structures in friction stir welding of aluminium and copper: influence of process parameters, Sci. Technol. Weld. Joining, 2011, vol. 16, no. 8, pp. 681–689. https://doi.org/10.1179/1362171811Y.0000000057

    Article  CAS  Google Scholar 

  16. Çam, G., Friction stir welded structural materials: beyond Al-alloys, Int. Mater. Rev., 2011, vol. 56, pp. 1–48. https://doi.org/10.1179/095066010X12777205875750

    Article  CAS  Google Scholar 

  17. Saeid, T., Abdollah-Zadeh, A., and Sazgari, B., Weldability and mechanical properties of dissimilar aluminium-copper lap joints made by friction stir welding, J. Alloys Compd., 2010, vol. 490, pp. 652–655. https://doi.org/10.1016/j.jallcom.2009.10.127

    Article  CAS  Google Scholar 

  18. Bisadi, H., Tavakoli, A., Sangsaraki, M.K., et al., The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints, Mater. Des., 2013, vol. 43, pp. 80–88. https://doi.org/10.1016/j.matdes.2012.06.029

    Article  CAS  Google Scholar 

  19. Ouyang, J., Yarrapareddy, E., and Kovacevic, R., Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper, J. Mater. Process. Technol., 2006, vol. 172, pp. 110–122. https://doi.org/10.1016/j.jmatprotec.2005.09.013

    Article  CAS  Google Scholar 

  20. Tan, C.W., Jiang, Z.G., Li, L.Q., Chen, Y.B., and Chen, X.Y., Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding, Mater. Des., 2013, vol. 51, pp. 466–473. https://doi.org/10.1016/j.matdes.2013.04.056

    Article  CAS  Google Scholar 

  21. Galvão, I., Verdera, D., Gesto, D., Loureiro, A., and Rodrigues, D.M., Influence of aluminium alloy type on dissimilar friction stir lap welding of aluminium to copper, J. Mater. Process. Technol., 2013, vol. 213, no. 11, pp. 1920–1928. https://doi.org/10.1016/j.jmatprotec.2013.05.004

    Article  CAS  Google Scholar 

  22. Eliefaey, A., Takahashi, M., and Ikeuchi, K., Microstructure of aluminium/copper lap joint by friction stir welding and its performance, J. High Temp. Soc. (Suita, Jpn.), 2004, vol. 30, pp. 286–292. https://doi.org/10.7791/jhts.30.286

  23. Abdollah-Zadeh, A., Saeid, T., and Sazgari, B., Microstructural and mechanical properties of friction stir welded aluminium/copper lap joints, J. Alloys Compd., 2008, vol. 460, pp. 535–538. https://doi.org/10.1016/j.jallcom.2007.06.009

    Article  CAS  Google Scholar 

  24. Zhou, L., Luo, L.Y., Tan, C.W., Li, Z.Y., Song, X.G., Zhao, H.Y., Huang, Y.X., and Feng, J.C., Effect of welding speed on microstructural evolution and mechanical properties of laser welded-brazed Al/brass dissimilar joints, Opt. Laser Technol., 2008, vol. 98, pp. 234–246. https://doi.org/10.1016/j.optlastec.2017.08.004

    Article  CAS  Google Scholar 

  25. Mishra, R.S., De, P.S., and Nilesh, K., Friction Stir Welding and Processing Science and Engineering, Cham: Springer, 2014.

    Google Scholar 

  26. Galvao, I., Loureiro, A., and Rodrigues, D.M., Critical review on friction stir welding of aluminium to copper, Sci. Technol. Weld. Joining, 2016, vol. 1718, pp. 1–24. https://doi.org/10.1080/13621718.2015.1118813

    Article  CAS  Google Scholar 

  27. Mehta, K.P. and Badheka, V.J., Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints, J. Mater. Process. Technol., 2017, vol. 239, pp. 336–345. https://doi.org/10.1016/j.jmatprotec.2016.08.037

    Article  CAS  Google Scholar 

  28. Erdem, M., Investigation of structure and mechanical properties of copper–brass plates joined by friction stir welding, Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 1583–1592. https://doi.org/10.1007/s00170-014-6387-1

    Article  Google Scholar 

  29. Tunçay, T. and Özyürek, D., Al-Si-Mg döküm alaşımlarında filtrasyonun mekanik özelliklere ve mikro yapıya etkisi, J. Fac. Eng. Archit. Gazi Univ., 2014, vol. 29, no. 2, pp. 271–279. https://doi.org/10.17341/gummfd.75240

    Article  Google Scholar 

  30. Wang, C., Luo, T., Zhou, J., and Yan, Y., Effects of solution and quenching treatment on the residual stress in extruded ZK60 magnesium alloy, Mater. Sci. Eng., A, 2018, vol. 722, pp. 14–19. https://doi.org/10.1016/j.msea.2018.02.047

    Article  CAS  Google Scholar 

  31. Robinson, J.S. and Redington, V.R., The influence of alloy composition on residual stresses in heat treated aluminium alloys, Mater. Charact., 2015, vol. 105, pp. 47–55. https://doi.org/10.1016/j.matchar.2015.04.017

    Article  CAS  Google Scholar 

  32. Ouyang, J.H. and Kovacevic, R., Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys, J. Mater. Eng. Perform., 2002, vol. 11, pp. 51–63. https://doi.org/10.1007/s11665-002-0008-0

    Article  CAS  Google Scholar 

  33. Okamura, H. and Aota, K., Joining of dissimilar materials with friction stir welding, Weld. Int., 2004, vol. 18, pp. 852–860. https://doi.org/10.1533/wint.2004.3344

    Article  Google Scholar 

  34. Zhang, K., Marthinsen, K., Holmedal, B., Aukrust, T., and Segatori, A., Through thickness variations of deformation texture in round profile extrusions of 6063-type aluminium alloy: Experiments, FEM and crystal plasticity modelling, Mater. Sci. Eng., A, 2018, vol. 722, pp. 20–29. https://doi.org/10.1016/j.msea.2018.02.081

    Article  CAS  Google Scholar 

  35. Xue, Y., Wang, X., Wang, W., Zhong, X., and Han, F., Compressive property of Al-based auxetic lattice structures fabricated by 3-D printing combined with investment casting, Mater. Sci. Eng., A, 2018, vol. 722, pp. 255–262. https://doi.org/10.1016/j.msea.2018.02.105

    Article  CAS  Google Scholar 

  36. Zheng, L., Nie, H., Zhang, W., Liang, W., and Wang, Y., Microstructural refinement and improvement of mechanical properties of hot-rolled Mg–3Al–Zn alloy sheets subjected to pre-extrusion and Al–Si alloying, Mater. Sci. Eng., A, 2018, vol. 722, pp. 58–68. https://doi.org/10.1016/j.msea.2017.12.048

    Article  CAS  Google Scholar 

  37. Huang, G., Feng, X., Shen, Y., Zheng, Q., and Zhao, P., Friction stir brazing of 6061 aluminum alloy and H62 brass: Evaluation of microstructure, mechanical and fracture behavior, Mater. Des., 2016, vol. 99, pp. 430–411. https://doi.org/10.1016/j.matdes.2016.03.094

    Article  CAS  Google Scholar 

  38. Xiao, Y., Ji, H., Li, M., and Kim, J., Ultrasound-assisted brazing of Cu/Al dissimilar metals using a Zn–3Al filler metal, Mater. Des., 2013, vol. 52, pp. 740–747. https://doi.org/10.1016/j.matdes.2013.06.016

    Article  CAS  Google Scholar 

  39. Berlanga-Labari, C., Albístur-Goñi, A., Balerdi-Azpilicueta, P., Gutiérrez-Peinado, M., and Fernández Carrasquilla, J., Study and selection of the most appropriate filler materials for an Al/Cu brazing joint in cooling circuits, Mater. Manuf. Processes, 2011, vol. 26, pp. 236–241. https://doi.org/10.1080/10426914.2010.508807

    Article  CAS  Google Scholar 

  40. Mercan, S., TR Patent 2015 03256 B 2017/05/22, 2017.

  41. Mercan, S., Farklı metal çiftlerinin mekanik kilitlenme yöntemi ile birleştirilmesi, Gazi Univ. J. Sci., Part C, 2019, vol. 7, no. 1, pp. 25–36. https://doi.org/10.29109/gujsc.437488

    Article  Google Scholar 

  42. Mercan, S. and Varol Özkavak, H., AISI 1040 ve AA6013 malzeme çiftinin mekanik kilitleme yönteminde (MLM) farklı bağlantı açıları kullanılarak birleştirilmesi, J. Fac. Eng. Archit. Gazi Univ., 2022, vol. 37, no. 4, pp. 2309–2322. https://doi.org/10.17341/gazimmfd.931293

    Article  Google Scholar 

  43. Mehta, A.K.P. and Badheka, V.J., Influence of tool pin design on properties of dissimilar copper to aluminum friction stir welding, Trans. Nonferrous Met. Soc. China, 2017, vol. 27, pp. 36−54. https://doi.org/10.1016/S1003-6326(17)60005-0

    Article  CAS  Google Scholar 

  44. Mercan, S., The effect of the amount of soldering wire on fatigue strength in joining steels and sockets, Int. J. Fatigue, 2019, vol. 127, pp. 157–164. https://doi.org/10.1016/j.ijfatigue.2019.06.004

    Article  CAS  Google Scholar 

  45. Muthu, F.X. and Jayabalan, V., Tool travel speed effects on the microstructure of friction stir welded aluminum-copper joints, J. Mater. Process. Technol., 2015, vol. 217, pp. 105–113. https://doi.org/10.1016/j.jmatprotec.2014.11.007

    Article  CAS  Google Scholar 

  46. Mercan, S. and Özdemir, N., Weldability characteristics of friction-welded AISI 2205 to AISI 1020 steels, Weld. World, 2017, vol. 61, no. 11, pp. 667–677. https://doi.org/10.1007/s40194-017-0441-1

    Article  CAS  Google Scholar 

  47. Torkamany, M.J. Tahamtan, S., and Sabbaghzadeh, J., Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser, Mater. Des.,2010, vol. 3, pp. 458–465. https://doi.org/10.1016/j.matdes.2009.05.046

    Article  CAS  Google Scholar 

  48. Somasekharan, A.C. and Murr, L.E., in Magnesium Technology, Luo, A.A., Ed., Warrendale, PA: The Minerals, Metals and Materials Society (TMS), 2004, pp. 31–36.

  49. Nagu, K. and Kumar, A., Effect of tool rotational speed on microstructure and mechanical properties of friction stir welded AA6061-T6 alloy using brass interlayer, Mater. Today: Proc., 2020, vol. 33, no. 8, pp. 5486–5491.

    CAS  Google Scholar 

  50. Malikova, A., Vitoshkin, I., Orishich, A., Filippov, A., and Karpov, E., Microstructure and mechanical properties of laser welded joints of Al–Cu–Li and Ti–Al–V alloys, J. Manuf. Processes, 2020, vol. 53, pp. 201–212. https://doi.org/10.1016/j.jmapro.2020.02.010

    Article  Google Scholar 

  51. He, H., Wu, C., Xie, Z., Liu, Y., Xu, W., and Jing, Y., Effects of alloyed fluxes on spreading behavior and microstructures of aluminum–titanium TIG brazing interface, Metallogr., Microstruct., Anal., 2017, vol. 6, pp. 82–88. https://doi.org/10.1007/s13632-016-0330-9

    Article  CAS  Google Scholar 

  52. Esmaeili, A., Besharati Givi, M.K., and Zareie Rajani, H.R., A metallurgical and mechanical study on dissimilar Friction Stir welding of aluminum 1050 to brass (CuZn30), Mater. Sci. Eng., A, 2011, vol. 528, pp. 7093–7102. https://doi.org/10.1016/j.msea.2011.06.004

    Article  CAS  Google Scholar 

  53. Sharma, N., Khan, Z.A., and Sıddıquee, A., Friction stir welding of aluminum to copper—An overview, Trans. Nonferrous Met. Soc. China, 2017, vol. 27, pp. 2113−2136. https://doi.org/10.1016/S1003-6326(17)60238-3

    Article  CAS  Google Scholar 

  54. Muhammad, N.A., Wu, C.S., and Tian, W., Effect of ultrasonic vibration on the intermetallic compound layer formation in Al/Cu friction stir weld joints, J. Alloys Compd., 2019, vol. 785, pp. 512–522. https://doi.org/10.1007/s00170-020-05019-0

    Article  CAS  Google Scholar 

  55. Xie, G.M., Ma, Z.Y., and Geng, L., Effects of friction stir welding parameters on microstructures and mechanical properties of brass joints, Mater. Trans., 2008, vol. 49, no. 7, pp. 1698–1701. https://doi.org/10.2320/matertrans.MRP2008089

    Article  CAS  Google Scholar 

  56. Gıhad, K., Merah, N., Shuaıb, A., Badour, F., and Bazoune, A., Experimental and numerical investigations of friction stir welding of aluminum to copper, in Applied Mechanics, Behavior of Materials, and Engineering Systems, Springer, 2017, pp. 129−138. https://doi.org/10.1007/978-3-319-41468-3_10.

  57. Bhattacharya, T.K., Das, H., and Pal, T.K., Influence of welding parameters on material flow, mechanical property and intermetallic characterization of friction stir welded AA6063 to HCP copper dissimilar butt joint without offset, Trans. Nonferrous Met. Soc. China, 2015, vol. 25, no. 9, pp. 2833−2846. https://doi.org/10.1016/S1003-6326(15)63909-7

    Article  CAS  Google Scholar 

  58. Avettand-Fenöel, M., Taıllard, R., Jı, G., and Goran, D., Multiscale study of interfacial intermetallic compounds in a dissimilar Al 6082-T6/Cu friction-stir weld, Metall. Mater. Trans. A, 2012, vol. 43, no. 12, pp. 4655−4666. https://doi.org/10.1007/s11661-012-1277-3

  59. Sıngh, S.H. and Mahmeen, M., Effect of tool pin offset on the mechanical properties of dissimilar materials based on friction stir welding (FSW), Int. J. Mod Trends Eng. Res., 2016, vol. 3, pp. 75−80.

    Google Scholar 

  60. Sakthıvel, T., Sengar, G., and Mukhopadhyay, J., Effect of welding speed on microstructure and mechanical properties of friction-stir-welded aluminum, Int. J. Adv. Manuf. Technol., 2009, vol. 43, nos. 5−6, pp. 468−473. https://doi.org/10.1007/s00170-008-1727-7

    Article  Google Scholar 

  61. Yamamoto, N., Jinsun, L., Watanabe, S., and Nakata, K., Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg Alloy and Al Alloy, Mater. Trans., 2009, vol. 50, no. 12, pp. 2833–2838. https://doi.org/10.2320/matertrans.M2009289

    Article  CAS  Google Scholar 

  62. Dehghani, M., Amadeh, A., and Akbari Mousavi, S.A.A., Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel, Mater. Des., 2013, vol. 49, pp. 433–441. https://doi.org/10.1016/j.matdes.2013.01.013

    Article  CAS  Google Scholar 

  63. Borrisutthekul, R., Yachi, T., Miyashita, Y., and Mutoh, Y., Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy, Mater. Sci. Eng., A, 2007, vol. 467, pp. 108–113. https://doi.org/10.1016/j.msea.2007.03.049

    Article  CAS  Google Scholar 

  64. Venkateswaran, P. and Reynolds, A.P., Factors affecting the properties of friction stir welds between aluminum and magnesium alloys, Mater. Sci. Eng., A, 2012, vol. 545, pp. 26–37. https://doi.org/10.1016/j.msea.2012.02.069

    Article  CAS  Google Scholar 

  65. Kim, H.G, Kim, S.M., Lee, J.L., Choi, M.R., Choe, S.H., Kim, K.H., Ryu, J.S., Kim, S., Han, S.Z., Kim, W.Y., and Lim, S.H., Microstructural evaluation of interfacial intermetallic compounds in Cu wire bonding with Al and Au 15 pads, Acta Mater., 2014, vol. 64, pp. 356–366. https://doi.org/10.1016/j.actamat.2013.10.049

    Article  CAS  Google Scholar 

  66. Zhao, X., Dong, F.B., Su, G.Y., and Guo, L.J., Weld quality improvement with hybrid FSW technology assisted by preheating for copper T2/aluminium 5A06 dissimilar materials, Appl. Mech. Mater., 2012, vol. 121, pp. 1707−1711. https://doi.org/10.1108/MMMS-02-2018-0025

    Article  Google Scholar 

  67. Mehta, K.P. and Badheka, V., Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminum, Mater. Manuf. Processes, 2016, vol. 31, no. 3, pp. 255−263. https://doi.org/10.1080/10426914.2014.994754

    Article  CAS  Google Scholar 

  68. Liu, H., Shen, J., Zhou, L., Zhao, Y., Liu, C., and Kuan, L., Microstructural characterization and mechanical properties of friction stir welded joints of aluminium alloy to copper, Sci. Technol. Weld. Joining, 2011, vol. 16, no. 1, pp. 92−98. https://doi.org/10.1179/1362171810Y.0000000007

    Article  CAS  Google Scholar 

  69. Wahid, M.A., Sıddıquee, A.N., Khan, Z.A. and Asjad, M., Friction stir welds of Al alloy–Cu: An investigation on effect of plunge depth, J. Arch. Mech. Eng., 2016, vol. 63, no. 4, pp. 619−634. https://doi.org/10.1515/meceng-2016-0035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Varol Özkavak.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkavak, H. Joining Cu30Zn (Brass) and AA6063 Alloys Using the Mechanical Locking Method. Russ. J. Non-ferrous Metals 63, 560–572 (2022). https://doi.org/10.3103/S1067821222050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222050078

Keywords:

Navigation