Skip to main content
Log in

Separation and Preconcentration of Impurities in Rare-Earth-Based Materials for Spectrometric Methods

  • METALLURGY OF RARE AND NOBLE METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The efficiency of using rare earth metals largely depends on their impurity composition, which affects the structure and properties of materials. Before the analytical control of materials based on rare earth elements (REEs) and the starting materials for their production, the task is to determine both macrocomponents with high accuracy and impurities with high sensitivity, correctness, and precision. To determine the impurities in REE-based materials in the range from 10–5 to 5.0 wt %, a complex of methods of atomic emission and mass spectral analysis is frequently used. However, the analysis of REE-based materials, even using these modern highly sensitive methods, is a difficult task due to spectral and matrix interferences. Therefore, different separation/preconcentration procedures are needed to determine both rare earth and non-rare-earth impurities. This article reviews publications of preconcentration methods for spectral and mass spectral methods of analysis of materials based on REEs and some other analytical methods. It is shown that the most common approaches are liquid extraction and chromatography. Sorption, cloud-point extraction, and precipitation are also used. There is no universal approach. Each method discussed in this article has its advantages and limitations. The analytical completion of the method confirms the effectiveness of the selected separation/preconcentration method in each specific case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Li, D., Li, Y., Pan, D., Zhang, Z., and Choi, C.J., Prospect and status of iron-based rare-earth-free permanent magnetic materials, J. Magn. Magn. Mater., 2019, vol. 4691, pp. 535–544.

    Article  Google Scholar 

  2. Baranovskaya, V.B., Karpov, Yu.A., Petrova, K.V., and Korotkova, N.A., Actual trends in the application of rare-earth metals and their compounds in the production of magnetic and luminescent materials: A review, Russ. J. Non-Ferrous Met., 2021, vol. 62, no. 1, pp. 10–31.

    Article  Google Scholar 

  3. Ritter, S.K., A whole new world for rare earths. How the technologically important metals rose from obscurity to ubiquity, Chem. Eng. News, 2017, vol. 95, no. 34, pp. 30–34.

    Google Scholar 

  4. Petrova, K.V., Baranovskaya, V.B., and Korotkova, N.A., Direct inductively coupled plasma optical emission spectrometry for analysis of waste samarium–cobalt magnets, Arabian J. Chem., 2022, vol. 15, no. 1, p. 103501.

    Article  CAS  Google Scholar 

  5. Korotkova, N.A., Petrova, K.V., and Baranovskaya, V.B., Analysis of cerium oxide by mass-spectral and atomic-emission methods with inductively-coupled plasma, J. Anal. Chem., 2021, vol. 76, no. 12, pp. 1–12.

    Google Scholar 

  6. Marathe, S.M., Biswas, S.S., Patil, P.B., and Murty, P., An ICP-AES method for the determination of heavy rare earth elements (Eu–Lu) in high purity yttrium oxide, Microchim. Acta, 1992, vol. 109, no. 5, pp. 261–268.

    Article  CAS  Google Scholar 

  7. Li, J.Y., Yang, J., and Dong, Z.R., Determination of 14 rare earth elements in high purity europium oxide by ICP-AES, Spectrosc. Spectral Anal. (Beijing, China), 1995, pp. 71–74.

    Google Scholar 

  8. Dong, R. and Xin, R., ICP-AES determination of Co-existing rare-earth impurities in high-purity europium oxide, Phys. Test. Chem. Anal., Part B, 2004, vol. 40, no. 3, pp. 135–137.

    CAS  Google Scholar 

  9. Biswas, S.S., Sethumadhavan, A., and Murty, P.S., Determination of Y, Sm, Eu, Gd, Dy, Ho, Er in high purity terbium oxide by ICP-AES, Microchim. Acta, 1991, vol. 103, no. 1, pp. 71–77.

    Article  Google Scholar 

  10. Cai, B., Hu, B., and Jiang, Z., Direct determination of trace rare earth elements in high purity Y2O3 using fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry with slurry sampling, Fresenius’ J. Anal. Chem., 2000, vol. 367, no. 3, pp. 259–263.

    Article  CAS  Google Scholar 

  11. Evdokimov, I.I. and Pimenov, V.G., Determination of impurities in optical ceramics and its precursors by atomic spectrometry, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2013, no. 4 (1), pp. 98–102.

  12. Evdokimov, I.I. and Pimenov, V.G., Determination of impurities in high-purity neodymium-doped yttrium oxide nano-powders by inductively coupled plasma atomic emission spectrometry, Anal. Kontrol, 2013, vol. 17, no. 2, pp. 170–176.

    Google Scholar 

  13. Evdokimov, I.I. and Pimenov, V.G., Analysis of yttrium oxide by inductively coupled plasma atomic emission spectrometry and coprecipitation of impurities, Zavod. Lab., Diagn. Mater., 2016, vol. 82, no. 9, pp. 5–12.

    CAS  Google Scholar 

  14. Javis, K.E., Gray, A.L., and Houk, R.S., Handbook of Inductively Coupled Plasma Mass Spectrometry, Glasgow: Blackie, 1992.

    Book  Google Scholar 

  15. Becker, J.S. and Dietze, H.J., State-of-the-art in inorganic mass spectrometry for analysis of high-purity materials, Int. J. Mass Spectrom., 2003, vol. 228, nos. 2–3, pp. 127–150.

    Article  CAS  Google Scholar 

  16. Day, J.A., Caruso, J.A., Becker, J.S., and Dietze, H.-J., Application of capillary electrophoresis interfaced to double focusing sector field ICP-MS for nuclide abundance determination of lanthanides produced via spallation reactions in an irradiated tantalum target, J. Anal. At. Spectrom., 2000, vol. 15, pp. 1343–1348.

    Article  CAS  Google Scholar 

  17. Kozono, S., Takahashi, S., and Haraguchi, H., Determination of boron in high-purity tantalum materials by on-line matrix separation/inductively coupled plasma mass spectrometry, Analyst, 2002, vol. 127, pp. 930–934.

    Article  CAS  Google Scholar 

  18. Zhang, X.Q., Yi, Y., Liu, Y.L., Li, X., Liu, J.L., Jiang, Y.M., and Su, Y.Q., Direct determination of rare earth impurities in high purity erbium oxide dissolved in nitric acid by inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 2006, vol. 555, pp. 57–62.

    Article  CAS  Google Scholar 

  19. Pedreira, W.R., Sarkis, J.E.S., Rodrigues, C., Tomiyoshi, I.A., and Queiroz, C.A., Determination of trace amounts of rare earth elements in highly pure praseodymium oxide by double focusing inductively coupled plasma mass spectrometry and high-performance liquid chromatography, J. Alloys Compd., 2001, vol. 49, pp. 323–324.

    Google Scholar 

  20. Pedreira, W.R., Sarkis, J.E.S., Rodrigues, C., Tomiyoshi, I.A., Queiroz, C.A., Queiroz, C.A., and Abrão, A., Determination of trace amounts of rare earth elements in high pure lanthanum oxide by sector field inductively coupled plasma mass spectrometry (HR ICP-MS) and high-performance liquid chromatography (HPLC) techniques, J. Alloys Compd., 2002, vol. 344, pp. 17–20.

    Article  CAS  Google Scholar 

  21. Pedreira, W.R., Sarkis, J.E.S., Queiroz, C.A., Rodrigues, C. Tomiyoshi, I.A. and Abrão, A., Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and high-performance liquid chromatography (HPLC) techniques, J. Solid State Chem., 2003, vol. 171, pp. 3–6.

    Article  CAS  Google Scholar 

  22. Balaram, V., Strategies to overcome interferences in elemental and isotopic geochemical analysis by quadrupole inductively coupled plasma mass spectrometry: A critical evaluation of the recent developments, Rapid Commun. Mass Spectrom., 2021, vol. 35, pp. 1–29.

    Article  Google Scholar 

  23. Douraied, B.S. and Jean-Alix, B., Determination of rare earth elements in gadolinium-based contrast agents by ICP-MS, Talanta, 2021, vol. 221, p. 121589.

    Article  Google Scholar 

  24. Shabani, M.B. and Masuda, A., Sample introduction by on-line two-stage solvent extraction and back-extraction to eliminate matrix interference and to enhance sensitivity in the determination of rare earth elements with inductively coupled plasma mass spectrometry, Anal. Chem., 1991, vol. 63, pp. 2099–2105.

    Article  CAS  Google Scholar 

  25. Adrian, A.A., Amman Inductively coupled plasma mass spectrometry (ICP MS): A versatile tool, J. Mass Spectrom., 2007, vol. 42, pp. 419–427.

    Article  Google Scholar 

  26. Kawabata, K., Kishi, Y., Kawaguchi, O., Watanabe, Y., and Inoue, Y., Determination of rare-earth elements by inductively coupled plasma mass spectrometry with ion chromatography, Anal. Chem., 1991, vol. 63, no. 19, pp. 2137–2140.

    Article  CAS  Google Scholar 

  27. Qin, S., Jiang, Z., Hu, B., Qin, Y., and Hu, S., HPLC combined with ICP-MS for the determination of trace amounts of rare earth impurities in high-purity La2O3 by using 2-ethylhexyl hydrogen-2ethylhexylphosphonate resin as a stationary phase, Fresenius’ J. Anal. Chem., 2000, vol. 367, no. 3, pp. 250–253.

    Article  CAS  Google Scholar 

  28. Cao, X., Yin, M., and Li, B., Determination of rare earth impurities in high purity gadolinium oxide by inductively coupled plasma mass spectrometry after 2-ethylhexylhydrogen-ethylhexy phosphonate extraction chromatographic separation, Talanta, 1999, vol. 48, no. 3, pp. 517–525.

    Article  CAS  Google Scholar 

  29. Zhang, X., Liu, J., Yi, Y., Liu, Y., Li, X., Su, Y., and Lin, P., Determination of rare earth impurities in high purity samarium oxide using inductively coupled plasma mass spectrometry after extraction chromatographic separation, Int. J. Mass Spectrom., 2007, vol. 260, no. 1, pp. 57–66.

    Article  CAS  Google Scholar 

  30. Pedreira, W.R., Queiroz, C.A., Abrao, A., Rocha, S.M., Vasconcellos, M.E., Boaventura, G.R., and Pimentel, M.M., Trace amounts of rare earth elements in high purity samarium oxide by sector field inductively coupled plasma mass spectrometry after separation by HPLC, J. Alloys Compd., 2006, vol. 418, nos. 1–2, pp. 247–250.

    Article  CAS  Google Scholar 

  31. Sun, X., Peng, B., Ji, Y., Chen, J., and Li, D., The solid-liquid extraction of yttrium from rare earths by solvent (ionic liquid) impregnated resin coupled with complexing method, Sep. Purif. Technol., 2008, vol. 63, no. 1, pp. 61–68.

    Article  CAS  Google Scholar 

  32. Yin, M., Li, B., Zhang, Y., and Cao, X.D., Determination of rare earths impurities in high purity Eu 2 O 3 by ICP-MS, Anal. Lab.-Beijing, 1999, vol. 18, pp. 1–6.

    Google Scholar 

  33. Qin, S., Bin, H., Yongchao, Q., Wanjau, R., and Zucheng, J., Determination of trace rare earth impurities in high-purity cerium oxide by using electrothermal vaporization ICP-AES after HPLC separation with 2‑ethylhexylhydrogen 2ethylhexylphosphonate resin as the stationary phase, J. Anal. At. Spectrom., 2000, vol. 15, pp. 1413–1416.

    Article  CAS  Google Scholar 

  34. Shuai, Q., Qin, Y., Hu, B., Xiong, H., and Jiang, Z., Determination of rare earth impurities in high-purity lanthanum oxide using electrothermal vaporization/ICP-AES after HPLC separation, Anal. Sci., 2000, vol. 16, pp. 957–961.

    Article  CAS  Google Scholar 

  35. Zishu, W., Xiyun, S., and Lijun, L.P., Extraction chromatographic separation and spark source mass spectrometric determination of 14 rare earth impurities in extra-pure Dy2O3, J. Instrum. Anal., 1995, no. 4, pp. 06–09.

  36. Xinjun, Z. and Yongfeng, Z.M.Z., The determination of 14 kinds of rare-earth element as impurity in high pure lutetium oxide by means of P507 chromatographic separation and ICP-AES, Uranium Geol., 1998, no. 1, pp. 6–10.

  37. Lu, Y.Q., Cao, Y.-Q., Wang, L.-H., and Xin, R.-X., Analysis of rare earth elements in high purity europium oxide, Rare Met., 2005, vol. 24, no. 3, pp. 216–220.

    CAS  Google Scholar 

  38. Jinying, L., Binghua, G., and Jingsu, G., Determination of 14 rare earth impurities in high purity europium oxide by axis-view ICP-AES with chromatographic separation, Rock Miner. Anal., 1994, vol. 3, pp. 21–28.

    Google Scholar 

  39. Zhiguang, W., Changqing, W., and Xing, W., Chemical preconcentration spectrographic determination of 14 rare earth impurities in 5N Gd2O3, Anal. Lab., 1998, vol. 1, p. 1.

  40. Xigun, S., Zishu, W., and Furong, H., Determination of fourteen rare earths impurities in high purity Nd2O3 by P(507) extraction chromatography separation-spark source mass spectrometry, J. Chin. Mass Spectrom. Soc., 1996, vol. 1, p. 1.

  41. Li, W., Peng, C., Yuan, P., Qi, W., Kuang, Z., and Xu, C., Determination of 14 rare earth impurities in Sm2O3, Eu2O3 and Gd2O3 of ultra-high purity by extraction chromatography atomic emission spectrometry, J. Instrum. Anal., 1998, vol. 1, pp. 18–21.

    Google Scholar 

  42. Kobayashi, S., Wakui, Y., Kanesato, M., Matsunaga, H., and Suzuki, T.M., Chromatographic separation and inductively coupled plasma atomic emission spectrometric determination of the rare earth metals contained in terbium, Anal. Chim. Acta, 1992, vol. 262, no. 1, pp. 161–166.

    Article  CAS  Google Scholar 

  43. Premadas, A. and Khorge, C.R., Solvent extraction separation of heavy rare earth elements from light rare earth elements and thorium: ICP-AES determination of REEs and yttrium in monazite mineral, At. Spectrosc., 2006, vol. 27, no. 5, pp. 170–177.

    CAS  Google Scholar 

  44. Kim, J.-G., Separation of heavy rare earth elements with extraction chromatography, Curr. Nanosci., 2014, vol. 10, pp. 11–15.

    Article  CAS  Google Scholar 

  45. Miranda, P. and Zinner, L.B., Separation of samarium and gadolinium solutions by solvent extraction, J. Alloys Compd., 1997, vol. 249, nos. 1–2, pp. 116–118.

    Article  CAS  Google Scholar 

  46. Agrawal, Y.K., Liquid-liquid extraction, separation, preconcentration, and ICP AES determination of lanthanum and cerium with N-Phenyl-(1,2-methanofullerene C60)61-formohydroxamic acid, Fullerenes, Nanotubes, Carbon Nanostruct., 2004, vol. 12, no. 3, pp. 545–570.

    Article  CAS  Google Scholar 

  47. Zhao, Z., Lyu, H., Guo, X., Dong, Y., Wang, Y., and Sun, X., The synergistic extraction by combined ammonium and phosphonium type ionic liquids for rare earth elements separation, Hydrometallurgy, 2017, vol. 174, pp. 234–247.

    Article  CAS  Google Scholar 

  48. Hastiawan, I., Bings, N.H., and Broekaert, J.A.C., Development and optimization of pre-concentration procedure of rare-earth elements (REEs) in their minerals, using microwave - assisted sample dissolution for ICP-atomic emission spectrometric detection, Procedia Chem., 2015, vol. 17, pp. 93–98.

    Article  CAS  Google Scholar 

  49. Jain, V.K., Pillap, S.G., and Mandal, H.C., Liquid-liquid extraction, preconcentration and transport studies of lanthanum(III) with calix [4]resorcinarene-hydroxamic acid (C4RAHA), J. Chil. Chem. Soc., 2007, vol. 52, no. 2, pp. 1177–1181.

    Article  CAS  Google Scholar 

  50. Amin, A.S., Kassem, M.A., and Moalla, S.M.N., Determination of scandium in monazite and environmental samples using cloud point extraction coupled with a spectrophotometric technique, RSC Adv., 2016, vol. 6, p. 73797.

    Article  CAS  Google Scholar 

  51. Guirguis, L., Orabi, A., and Mohamed, B., Extraction and derivative spectrophotometric assay of Sm(III), Pr(III) and Nd(III) from REEs monazite concentrate, Int. J. Environ. Anal. Chem., 2019, no. 6, pp. 1–20.

  52. Abdou, A.A., Abdelfattah, N.A., and Weheish, H.L., Development of a procedure for spectrophotometric determination of Pr(III) from rare earth elements (REEs) concentrate, SN Appl. Sci., 2019, vol. 1, no. 5, pp. 1–9.

    CAS  Google Scholar 

  53. Zheng, X., En-li, L., Zhang, F., Yan, Y., and Pan, J., Efficient adsorption and separation of dysprosium from NdFeB magnets in an acidic system by ion imprinted mesoporous silica sealed in a dialysis bag, Green Chem., 2016, vol. 18, no. 18, pp. 5031–5040.

    Article  CAS  Google Scholar 

  54. Banda, R., Jeon, H.S., and Lee, M.S., Solvent extraction separation of La from chloride solution containing Pr and Nd with Cyanex 272, Hydrometallurgy, 2012, vol. 121, pp. 74–80.

    Article  Google Scholar 

  55. El-Nadi, Y.A., Lanthanum and neodymium from Egyptian monazite: synergistic extractive separation using organophosphorus reagents, Hydrometallurgy, 2012, vol. 119, pp. 23–29.

    Article  Google Scholar 

  56. Vasylechko, V.O., Gryshchouk, G.V., Zakordonskiy, V.P., Vasylechko, L.O., Schmidt, M., Leshchack, I.M., Kalychak, Ya.M., and Bagday, S.R., Sorption-luminescence method for determination of terbium using Transcarpathian clinoptilolite, Talanta, 2017, vol. 174, pp. 486–492.

    Article  CAS  Google Scholar 

  57. Rabie, K.A., Sayed, S.A., Lasheen, T.A., and Salama, I.E., Europium separation from a middle rare earths concentrate derived from Egyptian black sand monazite, Hydrometallurgy, 2007, vol. 86, nos. 3–4, pp. 121–130.

    Article  CAS  Google Scholar 

  58. Metwally, S.S., Hassan, R.S., El-Masry, E.H., and Borai, E.H., Gamma-induced radiation polymerization of kaolin composite for sorption of lanthanum, europium and uranium ions from low-grade monazite leachate, J. Radioanal. Nucl. Chem., 2018, vol. 315, no. 1, pp. 39–49.

    Article  CAS  Google Scholar 

  59. Karpov, Yu.A., Churbanov, M.F., Baranovskaya, V.B., Lazukina, O.P., and Petrova, K.V., High pure substances–prototypes of elements of periodic table, Pure Appl. Chem., 2020, vol. 92, no. 8, pp. 1357–1366.

    Article  CAS  Google Scholar 

  60. Lee, G.S., Uchikoshi, M., Mimura, K., and Isshiki, M., Separation of major impurities Ce, Pr, Nd, Sm, Al, Ca, Fe, and Zn from La using bis (2-ethylhexyl) phosphoric acid (D2EHPA)-impregnated resin in a hydrochloric acid medium, Sep. Purif. Technol., 2010, vol. 71, no. 2, pp. 186–191.

    Article  CAS  Google Scholar 

  61. Yang, X.J., Extractive chromatographic separation and inductively coupled plasma atomic emission spectrometric determination of trace impurities in high purity europium oxide, Talanta, 1994, vol. 41, no. 11, pp. 1807–1813.

    Article  CAS  Google Scholar 

  62. Yang, X.J. and Guan, J.S., End-on viewed inductively coupled plasma for the determination of trace impurities in high-purity scandium oxide by extraction chromatography, Anal. Chim. Acta, 1993, vol. 279, no. 2, pp. 261–272.

    Article  CAS  Google Scholar 

  63. Choi, K.S., Lee, C.H., Kim, J.G., Kim, W.H., and Kang, J.G., Separating Ag, B, Cd, Dy, Eu, and Sm in a Gd matrix using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester extraction chromatography for ICP analysis, Talanta, 2007, vol. 71, no. 2, pp. 662–667.

    Article  CAS  Google Scholar 

  64. Ruth, W., Zu-cheng, J., Bin, H., Yong-chao, Q., Ying-liang, W., and Xia-shi, Z., Simultaneous determination of trace rare earth elements and other elements in high purity terbium oxide (Tb4O7) by ICP-AES after HPLC separation using P507 resin, Wuhan Univ. J. Nat. Sci., 2002, vol. 7, no. 2, pp. 212–216.

    Article  Google Scholar 

  65. Hongnian, J., Lian, L., Zhenhuan, L., and Zucheng, J., Determination of trace non rare earth metals in high purity lanthanum oxide by ICP AES with preconcentration on active carbon silica gel microcolumn in a flow injection system, J. Anal. Sci., 1996, vol. 12, p. 03.

  66. Hou, L., Wang, S., and Li, J., Determination of 17 trace impurity elements and erbium Zr–U–Er alloy by chromatographic separation with tributyl phosphate and ICP-AES, Spectrosc. Spectral Anal. (Beijing, China), 1996, no. 3, pp. 5–8.

  67. Zucheng, J.H.J., Determination of trace non rare earth elements in high purity rare earth oxides by ICP AES, J. Wuxi Univ. Light Ind., 1999, no. 1, p. 5.

  68. Ji, H., Liao, Z., Sun, J.-G., and Jiang, Z., Study and application of a method for the determination of metallic elements by ICP-AES with preconcentration on an active carbon-silica gel microcolumn in a FI system, Fresenius’ J. Anal. Chem., 1998, vol. 360, no. 6, pp. 721–723.

    Article  CAS  Google Scholar 

  69. Wanjau, R., Jiang, Z.-C., Hu, B., and Shuai, Q., Determination of non-rare earth impurities in high purity lanthanum oxide by inductively coupled plasma atomic emission spectrometry after HPLC separation using P507 resin, Chin. J. Rare Earths, 2001, vol. 19, no. 4, pp. 299–303.

    Google Scholar 

  70. Karandashev, V.K., Zhernokleeva, K.V., Turanov, A.N., Baranovskaya, V.B., and Karpov, Yu.A., Determination of admixtures of high-melting metals in rare-earth metals and their compounds, J. Anal. Chem., 2012, vol. 67, no. 4, pp. 340–348.

    Article  CAS  Google Scholar 

  71. Agrawal, Y.K. and Vora, S.B., Selective extraction and separation of thorium from monazite using N-phenylbenzo-18-crown-6-hydroxamic acid, Microchim. Acta, 2003, vol. 142, no. 4, pp. 255–261.

    Article  CAS  Google Scholar 

  72. Jiafeng, W. and Zhengmin, Z., Determination of impurities in high purity europium oxide by inductively coupled plasma-atomic emission spectrometry after reduction-extraction separation, Metall. Anal., 1998, vol. 18, pp. 1–5.

    Google Scholar 

  73. Koshel’, E.S., Baranovskaya, V.B., and Doronina, M.S., Arc atomic emission analysis of rare earth metals and their oxides with preliminary sorption concentration of impurities, Zavod. Lab., Diagn. Mater., 2018, vol. 84, no. 11, pp. 9–14.

    Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 20-13-00180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Petrova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Saetova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, K.V., Es’kina, V.V., Baranovskaya, V.B. et al. Separation and Preconcentration of Impurities in Rare-Earth-Based Materials for Spectrometric Methods. Russ. J. Non-ferrous Metals 63, 510–525 (2022). https://doi.org/10.3103/S106782122205008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782122205008X

Keywords:

Navigation