1932

Abstract

Alcohol-associated liver disease (ALD) is one of the major diseases arising from chronic alcohol consumption and is one of the most common causes of liver-related morbidity and mortality. ALD includes asymptomatic liver steatosis, fibrosis, cirrhosis, and alcohol-associated hepatitis and its complications. The progression of ALD involves complex cell-cell and organ-organ interactions. We focus on the impact of alcohol on dysregulation of homeostatic mechanisms and regulation of injury and repair in the liver. In particular, we discuss recent advances in understanding the disruption of balance between programmed cell death and prosurvival pathways, such as autophagy and membrane trafficking, in the pathogenesis of ALD. We also summarize current understanding of innate immune responses, liver sinusoidal endothelial cell dysfunction and hepatic stellate cell activation, and gut-liver and adipose-liver cross talk in response to ethanol. In addition,we describe the current potential therapeutic targets and clinical trials aimed at alleviating hepatocyte injury, reducing inflammatory responses, and targeting gut microbiota, for the treatment of ALD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-030435
2023-01-24
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031521-030435.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-030435&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    World Health Organ. (WHO) 2018. Global status report on alcohol and health 2018 Rep. WHO Geneva: https://www.who.int/publications/i/item/9789241565639
  2. 2.
    Seitz HK, Bataller R, Cortez-Pinto H, Gao B, Gual A et al. 2018. Alcoholic liver disease. Nat. Rev. Dis. Primers 4:16
    [Google Scholar]
  3. 3.
    Thursz M, Kamath PS, Mathurin P, Szabo G, Shah VH. 2019. Alcohol-related liver disease: areas of consensus, unmet needs and opportunities for further study. J. Hepatol. 70:521–30
    [Google Scholar]
  4. 4.
    Lee BP, Vittinghoff E, Dodge JL, Cullaro G, Terrault NA. 2019. National trends and long-term outcomes of liver transplant for alcohol-associated liver disease in the United States. JAMA Intern. Med. 179:340–48
    [Google Scholar]
  5. 5.
    Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA. 2010. Variant in PNPLA3 is associated with alcoholic liver disease. Nat. Genet. 42:21–23
    [Google Scholar]
  6. 6.
    Nagy LE, Ding WX, Cresci G, Saikia P, Shah VH. 2016. Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes. Gastroenterology 150:1756–68
    [Google Scholar]
  7. 7.
    Edenberg HJ, McClintick JN. 2018. Alcohol dehydrogenases, aldehyde dehydrogenases, and alcohol use disorders: a critical review. Alcohol. Clin. Exp. Res. 42:2281–97
    [Google Scholar]
  8. 8.
    Zakhari S. 2006. Overview: How is alcohol metabolized by the body?. Alcohol. Res. Health 29:245–54
    [Google Scholar]
  9. 9.
    Wilson DF, Matschinsky FM. 2020. Ethanol metabolism: the good, the bad, and the ugly. Med. Hypotheses 140:109638
    [Google Scholar]
  10. 10.
    Heier C, Xie H, Zimmermann R. 2016. Nonoxidative ethanol metabolism in humans—from biomarkers to bioactive lipids. IUBMB Life 68:916–23
    [Google Scholar]
  11. 11.
    Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. 2019. The molecular machinery of regulated cell death. Cell Res. 29:347–64
    [Google Scholar]
  12. 12.
    Zheng M, Kanneganti TD. 2020. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol. Rev. 297:26–38
    [Google Scholar]
  13. 13.
    Stolz A, Ernst A, Dikic I. 2014. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16:495–501
    [Google Scholar]
  14. 14.
    Shen Y, Malik SA, Amir M, Kumar P, Cingolani F et al. 2020. Decreased hepatocyte autophagy leads to synergistic IL-1β and TNF mouse liver injury and inflammation. Hepatology 72:595–608
    [Google Scholar]
  15. 15.
    Wan J, Weiss E, Ben Mkaddem S, Mabire M, Choinier PM et al. 2020. LC3-associated phagocytosis protects against inflammation and liver fibrosis via immunoreceptor inhibitory signaling. Sci. Transl. Med. 12:eaaw8523
    [Google Scholar]
  16. 16.
    Chao X, Wang S, Zhao K, Li Y, Williams JA et al. 2018. Impaired TFEB-mediated lysosome biogenesis and autophagy promote chronic ethanol-induced liver injury and steatosis in mice. Gastroenterology 155:865–79.e12
    [Google Scholar]
  17. 17.
    Francis H, McDaniel K, Han Y, Liu X, Kennedy L et al. 2014. Regulation of the extrinsic apoptotic pathway by microRNA-21 in alcoholic liver injury. J. Biol. Chem. 289:27526–39
    [Google Scholar]
  18. 18.
    Chattopadhyay S, Kuzmanovic T, Zhang Y, Wetzel JL, Sen GC. 2016. Ubiquitination of the transcription factor IRF-3 activates RIPA, the apoptotic pathway that protects mice from viral pathogenesis. Immunity 44:1151–61
    [Google Scholar]
  19. 19.
    Petrasek J, Iracheta-Vellve A, Csak T, Satishchandran A, Kodys K et al. 2013. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. PNAS 110:16544–49
    [Google Scholar]
  20. 20.
    Luther J, Khan S, Gala MK, Kedrin D, Sridharan G et al. 2020. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. PNAS 117:11667–73
    [Google Scholar]
  21. 21.
    Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A et al. 2014. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59:130–42
    [Google Scholar]
  22. 22.
    Sanz-Garcia C, Poulsen KL, Bellos D, Wang H, McMullen MR et al. 2019. The non-transcriptional activity of IRF3 modulates hepatic immune cell populations in acute-on-chronic ethanol administration in mice. J. Hepatol. 70:974–84
    [Google Scholar]
  23. 23.
    Roychowdhury S, Chiang DJ, Mandal P, McMullen MR, Liu X et al. 2012. Inhibition of apoptosis protects mice from ethanol-mediated acceleration of early markers of CCl4-induced fibrosis but not steatosis or inflammation. Alcohol. Clin. Exp. Res. 36:1139–47
    [Google Scholar]
  24. 24.
    Hao F, Cubero FJ, Ramadori P, Liao L, Haas U et al. 2017. Inhibition of Caspase-8 does not protect from alcohol-induced liver apoptosis but alleviates alcoholic hepatic steatosis in mice. Cell Death Dis. 8:e3152
    [Google Scholar]
  25. 25.
    Linkermann A, Green DR. 2014. Necroptosis. N. Engl. J. Med. 370:455–65
    [Google Scholar]
  26. 26.
    Wang S, Ni HM, Dorko K, Kumer SC, Schmitt TM et al. 2016. Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury. Oncotarget 7:17681–98
    [Google Scholar]
  27. 27.
    Roychowdhury S, McMullen MR, Pisano SG, Liu X, Nagy LE. 2013. Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology 57:1773–83
    [Google Scholar]
  28. 28.
    Hanna-Addams S, Liu S, Liu H, Chen S, Wang Z 2020. CK1α, CK1δ, and CK1ε are necrosome components which phosphorylate serine 227 of human RIPK3 to activate necroptosis. PNAS 117:1962–70
    [Google Scholar]
  29. 29.
    Miyata T, Wu X, Fan X, Huang E, Sanz-Garcia C et al. 2021. Differential role of MLKL in alcohol-associated and non-alcohol-associated fatty liver diseases in mice and humans. JCI Insight 6:e140180
    [Google Scholar]
  30. 30.
    Vatsalya V, Cave MC, Kong M, Gobejishvili L, Falkner KC et al. 2020. Keratin 18 is a diagnostic and prognostic factor for acute alcoholic hepatitis. Clin. Gastroenterol. Hepatol. 18:2046–54
    [Google Scholar]
  31. 31.
    Atkinson SR, Grove JI, Liebig S, Astbury S, Vergis N et al. 2020. In severe alcoholic hepatitis, serum keratin-18 fragments are diagnostic, prognostic, and theragnostic biomarkers. Am. J. Gastroenterol. 115:1857–68
    [Google Scholar]
  32. 32.
    Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X 2021. Pyroptosis: mechanisms and diseases. Signal Transduct. Target. Ther. 6:128
    [Google Scholar]
  33. 33.
    Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG. 2001. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 34:101–8
    [Google Scholar]
  34. 34.
    Heo MJ, Kim TH, You JS, Blaya D, Sancho-Bru P, Kim SG. 2019. Alcohol dysregulates miR-148a in hepatocytes through FoxO1, facilitating pyroptosis via TXNIP overexpression. Gut 68:708–20
    [Google Scholar]
  35. 35.
    Petrasek J, Iracheta-Vellve A, Saha B, Satishchandran A, Kodys K et al. 2015. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. J. Leukoc. Biol. 98:249–56
    [Google Scholar]
  36. 36.
    Iracheta-Vellve A, Petrasek J, Satishchandran A, Gyongyosi B, Saha B et al. 2015. Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J. Hepatol. 63:1147–55
    [Google Scholar]
  37. 37.
    Petrasek J, Bala S, Csak T, Lippai D, Kodys K et al. 2012. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Investig. 122:3476–89
    [Google Scholar]
  38. 38.
    Khanova E, Wu R, Wang W, Yan R, Chen Y et al. 2018. Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients. Hepatology 67:1737–53
    [Google Scholar]
  39. 39.
    Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M et al. 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–85
    [Google Scholar]
  40. 40.
    Carlson BA, Tobe R, Yefremova E, Tsuji PA, Hoffmann VJ et al. 2016. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 9:22–31
    [Google Scholar]
  41. 41.
    Wu J, Wang Y, Jiang R, Xue R, Yin X et al. 2021. Ferroptosis in liver disease: new insights into disease mechanisms. Cell Death Discov. 7:276
    [Google Scholar]
  42. 42.
    Liu CY, Wang M, Yu HM, Han FX, Wu QS et al. 2020. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci. Biotechnol. Biochem. 84:1621–28
    [Google Scholar]
  43. 43.
    Zhou Z, Ye TJ, Bonavita G, Daniels M, Kainrad N et al. 2019. Adipose-specific lipin-1 overexpression renders hepatic ferroptosis and exacerbates alcoholic steatohepatitis in mice. Hepatol. Commun. 3:656–69
    [Google Scholar]
  44. 44.
    Zhou Z, Ye TJ, DeCaro E, Buehler B, Stahl Z et al. 2020. Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis. Am. J. Pathol. 190:82–92
    [Google Scholar]
  45. 45.
    Ding WX, Li M, Chen X, Ni HM, Lin CW et al. 2010. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 139:1740–52
    [Google Scholar]
  46. 46.
    Schulze RJ, Rasineni K, Weller SG, Schott MB, Schroeder B et al. 2017. Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatol Commun. 1:140–52
    [Google Scholar]
  47. 47.
    Rasineni K, Donohue TM Jr., Thomes PG, Yang L, Tuma DJ et al. 2017. Ethanol-induced steatosis involves impairment of lipophagy, associated with reduced Dynamin2 activity. Hepatol. Commun. 1:501–12
    [Google Scholar]
  48. 48.
    Babuta M, Furi I, Bala S, Bukong TN, Lowe P et al. 2019. Dysregulated autophagy and lysosome function are linked to exosome production by micro-RNA 155 in alcoholic liver disease. Hepatology 70:2123–41
    [Google Scholar]
  49. 49.
    Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. 2015. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J. Transl. Med. 13:261
    [Google Scholar]
  50. 50.
    Sehrawat TS, Arab JP, Liu M, Amrollahi P, Wan M et al. 2021. Circulating extracellular vesicles carrying sphingolipid cargo for the diagnosis and dynamic risk profiling of alcoholic hepatitis. Hepatology 73:571–85
    [Google Scholar]
  51. 51.
    Saha B, Momen-Heravi F, Furi I, Kodys K, Catalano D et al. 2018. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology 67:1986–2000
    [Google Scholar]
  52. 52.
    Allaire M, Rautou PE, Codogno P, Lotersztajn S. 2019. Autophagy in liver diseases: time for translation?. J. Hepatol. 70:985–98
    [Google Scholar]
  53. 53.
    Fernandez AF, Sebti S, Wei Y, Zou Z, Shi M et al. 2018. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558:136–40
    [Google Scholar]
  54. 54.
    Goodall ML, Fitzwalter BE, Zahedi S, Wu M, Rodriguez D et al. 2016. The autophagy machinery controls cell death switching between apoptosis and necroptosis. Dev. Cell 37:337–49
    [Google Scholar]
  55. 55.
    Frank D, Vaux DL, Murphy JM, Vince JE, Lindqvist LM. 2019. Activated MLKL attenuates autophagy following its translocation to intracellular membranes. J. Cell Sci. 132:5jcs220996
    [Google Scholar]
  56. 56.
    Wu X, Poulsen KL, Sanz-Garcia C, Huang E, McMullen MR et al. 2020. MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis. J. Hepatol. 73:616–27
    [Google Scholar]
  57. 57.
    Yoon S, Kovalenko A, Bogdanov K, Wallach D. 2017. MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity 47:51–65.e7
    [Google Scholar]
  58. 58.
    Guo R, Wang H, Cui N. 2021. Autophagy regulation on pyroptosis: mechanism and medical implication in sepsis. Mediators Inflamm. 2021:9925059
    [Google Scholar]
  59. 59.
    Wang G, Jin S, Huang W, Li Y, Wang J et al. 2021. LPS-induced macrophage HMGB1-loaded extracellular vesicles trigger hepatocyte pyroptosis by activating the NLRP3 inflammasome. Cell Death Discov. 7:337
    [Google Scholar]
  60. 60.
    Wang H, Mehal W, Nagy LE, Rotman Y. 2021. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell. Mol. Immunol. 18:73–91
    [Google Scholar]
  61. 61.
    Kim A, Bellar A, McMullen MR, Li X, Nagy LE. 2020. Functionally diverse inflammatory responses in peripheral and liver monocytes in alcohol-associated hepatitis. Hepatol. Commun. 4:1459–76
    [Google Scholar]
  62. 62.
    Zhou H, Yu M, Zhao J, Martin BN, Roychowdhury S et al. 2016. IRAKM-Mincle axis links cell death to inflammation: pathophysiological implications for chronic alcoholic liver disease. Hepatology 64:1978–93
    [Google Scholar]
  63. 63.
    Yang AM, Inamine T, Hochrath K, Chen P, Wang L et al. 2017. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Investig. 127:2829–41
    [Google Scholar]
  64. 64.
    Kim JW, Roh YS, Jeong H, Yi HK, Lee MH et al. 2018. Spliceosome-associated protein 130 exacerbates alcohol-induced liver injury by inducing NLRP3 inflammasome-mediated IL-1β in mice. Am. J. Pathol. 188:967–80
    [Google Scholar]
  65. 65.
    Laso FJ, Madruga JI, Giron JA, Lopez A, Ciudad J et al. 1997. Decreased natural killer cytotoxic activity in chronic alcoholism is associated with alcohol liver disease but not active ethanol consumption. Hepatology 25:1096–100
    [Google Scholar]
  66. 66.
    Kim A, Wu X, Allende DS, Nagy LE. 2021. Gene deconvolution reveals aberrant liver regeneration and immune cell infiltration in alcohol-associated hepatitis. Hepatology 74:987–1002
    [Google Scholar]
  67. 67.
    Argemi J, Latasa MU, Atkinson SR, Blokhin IO, Massey V et al. 2019. Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nat. Commun. 10:3126
    [Google Scholar]
  68. 68.
    Tilg H, Moschen AR, Szabo G. 2016. Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 64:955–65
    [Google Scholar]
  69. 69.
    Mathews S, Gao B. 2013. Therapeutic potential of interleukin 1 inhibitors in the treatment of alcoholic liver disease. Hepatology 57:2078
    [Google Scholar]
  70. 70.
    Lavallard VJ, Bonnafous S, Patouraux S, Saint-Paul M-C, Rousseau D et al. 2011. Serum markers of hepatocyte death and apoptosis are non invasive biomarkers of severe fibrosis in patients with alcoholic liver disease. PLOS ONE 6:e17599
    [Google Scholar]
  71. 71.
    Hill DB, D'Souza NB, Lee EY, Burikhanov R, Deaciuc IV, de Villiers WJ 2002. A role for interleukin-10 in alcohol-induced liver sensitization to bacterial lipopolysaccharide. Alcohol. Clin. Exp. Res. 26:74–82
    [Google Scholar]
  72. 72.
    Ki SH, Park O, Zheng M, Morales-Ibanez O, Kolls JK et al. 2010. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology 52:1291–300
    [Google Scholar]
  73. 73.
    Arab JP, Sehrawat TS, Simonetto DA, Verma VK, Feng D et al. 2020. An open-label, dose-escalation study to assess the safety and efficacy of IL-22 agonist F-652 in patients with alcohol-associated hepatitis. Hepatology 72:441–53
    [Google Scholar]
  74. 74.
    Gao B, Xu M. 2014. Chemokines and alcoholic hepatitis: Are chemokines good therapeutic targets?. Gut 63:1683–84
    [Google Scholar]
  75. 75.
    Wieser V, Adolph TE, Enrich B, Kuliopulos A, Kaser A et al. 2017. Reversal of murine alcoholic steatohepatitis by pepducin-based functional blockade of interleukin-8 receptors. Gut 66:930–38
    [Google Scholar]
  76. 76.
    Sheron N, Bird G, Koskinas J, Portmann B, Ceska M et al. 1993. Circulating and tissue levels of the neutrophil chemotaxin interleukin-8 are elevated in severe acute alcoholic hepatitis, and tissue levels correlate with neutrophil infiltration. Hepatology 18:41–46
    [Google Scholar]
  77. 77.
    Affò S, Morales-Ibanez O, Rodrigo-Torres D, Altamirano J, Blaya D et al. 2014. CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis. Gut 63:1782–92
    [Google Scholar]
  78. 78.
    Poulsen KL, Fan X, Kibler CD, Huang E, Wu X et al. 2021. Role of MIF in coordinated expression of hepatic chemokines in patients with alcohol-associated hepatitis. JCI Insight 6:e141420
    [Google Scholar]
  79. 79.
    Santiesteban-Lores LE, Carneiro MC, Isaac L, Bavia L. 2021. Complement system in alcohol-associated liver disease. Immunol. Lett. 236:37–50
    [Google Scholar]
  80. 80.
    Shen H, French BA, Liu H, Tillman BC, French SW. 2014. Increased activity of the complement system in the liver of patients with alcoholic hepatitis. Exp. Mol. Pathol. 97:338–44
    [Google Scholar]
  81. 81.
    Pritchard MT, McMullen MR, Stavitsky AB, Cohen JI, Lin F et al. 2007. Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice. Gastroenterology 132:1117–26
    [Google Scholar]
  82. 82.
    Zhong F, Hu Z, Jiang K, Lei B, Wu Z et al. 2019. Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis. Cell Res. 29:548–61
    [Google Scholar]
  83. 83.
    Cohen JI, Roychowdhury S, McMullen MR, Stavitsky AB, Nagy LE. 2010. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice. Gastroenterology 139:664–74.e1
    [Google Scholar]
  84. 84.
    Smathers RL, Chiang DJ, McMullen MR, Feldstein AE, Roychowdhury S, Nagy LE. 2016. Soluble IgM links apoptosis to complement activation in early alcoholic liver disease in mice. Mol. Immunol. 72:9–18
    [Google Scholar]
  85. 85.
    McCullough RL, McMullen MR, Das D, Roychowdhury S, Strainic MG et al. 2016. Differential contribution of complement receptor C5aR in myeloid and non-myeloid cells in chronic ethanol-induced liver injury in mice. Mol. Immunol. 75:122–32
    [Google Scholar]
  86. 86.
    McCullough RL, McMullen MR, Poulsen KL, Kim A, Medof ME, Nagy LE. 2018. Anaphylatoxin receptors C3aR and C5aR1 are important factors that influence the impact of ethanol on the adipose secretome. Front. Immunol. 9:2133
    [Google Scholar]
  87. 87.
    McCullough RL, McMullen MR, Sheehan MM, Poulsen KL, Roychowdhury S et al. 2018. Complement Factor D protects mice from ethanol-induced inflammation and liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 315:G66–79
    [Google Scholar]
  88. 88.
    Wlazlo N, van Greevenbroek MM, Ferreira I, Jansen EH, Feskens EJ et al. 2013. Activated complement factor 3 is associated with liver fat and liver enzymes: the CODAM study. Eur. J. Clin. Investig. 43:679–88
    [Google Scholar]
  89. 89.
    Fan X, McCullough RL, Huang E, Bellar A, Kim A et al. 2021. Diagnostic and prognostic significance of complement in patients with alcohol-associated hepatitis. Hepatology 73:983–97
    [Google Scholar]
  90. 90.
    Bou Saleh M, Louvet A, Ntandja-Wandji LC, Boleslawski E, Gnemmi V et al. 2021. Loss of hepatocyte identity following aberrant YAP activation: a key mechanism in alcoholic hepatitis. J. Hepatol. 75:912–23
    [Google Scholar]
  91. 91.
    Hyun J, Sun Z, Ahmadi AR, Bangru S, Chembazhi UV et al. 2020. Epithelial splicing regulatory protein 2-mediated alternative splicing reprograms hepatocytes in severe alcoholic hepatitis. J. Clin. Investig. 130:2129–45
    [Google Scholar]
  92. 92.
    Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO et al. 2010. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468:310–15
    [Google Scholar]
  93. 93.
    Preziosi M, Okabe H, Poddar M, Singh S, Monga SP. 2018. Endothelial Wnts regulate β-catenin signaling in murine liver zonation and regeneration: a sequel to the Wnt-Wnt situation. Hepatol. Commun. 2:845–60
    [Google Scholar]
  94. 94.
    Wang B, Zhao L, Fish M, Logan CY, Nusse R. 2015. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524:180–85
    [Google Scholar]
  95. 95.
    Bengochea A, de Souza MM, Lefrancois L, Le Roux E, Galy O et al. 2008. Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma. Br. J. Cancer 99:143–50
    [Google Scholar]
  96. 96.
    Shetty S, Lalor PF, Adams DH. 2018. Liver sinusoidal endothelial cells—gatekeepers of hepatic immunity. Nat. Rev. Gastroenterol. Hepatol. 15:555–67
    [Google Scholar]
  97. 97.
    DeLeve LD. 2015. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 61:1740–46
    [Google Scholar]
  98. 98.
    Protzer U, Maini MK, Knolle PA. 2012. Living in the liver: hepatic infections. Nat. Rev. Immunol. 12:201–13
    [Google Scholar]
  99. 99.
    Miyao M, Kotani H, Ishida T, Kawai C, Manabe S et al. 2015. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab. Investig. 95:1130–44
    [Google Scholar]
  100. 100.
    Xie G, Choi SS, Syn WK, Michelotti GA, Swiderska M et al. 2013. Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut 62:299–309
    [Google Scholar]
  101. 101.
    Deleve LD, Wang X, Guo Y. 2008. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48:920–30
    [Google Scholar]
  102. 102.
    Friedman SL. 2008. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88:125–72
    [Google Scholar]
  103. 103.
    Khomich O, Ivanov AV, Bartosch B. 2019. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells 9:24
    [Google Scholar]
  104. 104.
    Puche JE, Saiman Y, Friedman SL. 2013. Hepatic stellate cells and liver fibrosis. Compr. Physiol. 3:1473–92
    [Google Scholar]
  105. 105.
    Das D, Barnes MA, Nagy LE. 2014. Anaphylatoxin C5a modulates hepatic stellate cell migration. Fibrogenesis Tissue Repair 7:9
    [Google Scholar]
  106. 106.
    Kim A, Saikia P, Nagy LE. 2019. miRNAs involved in M1/M2 hyperpolarization are clustered and coordinately expressed in alcoholic hepatitis. Front. Immunol. 10:1295
    [Google Scholar]
  107. 107.
    Bala S, Marcos M, Kodys K, Csak T, Catalano D et al. 2011. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease. J. Biol. Chem. 286:1436–44
    [Google Scholar]
  108. 108.
    Szabo G, Satishchandran A. 2015. MicroRNAs in alcoholic liver disease. Semin. Liver Dis. 35:36–42
    [Google Scholar]
  109. 109.
    Tang Y, Banan A, Forsyth CB, Fields JZ, Lau CK et al. 2008. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol. Clin. Exp. Res. 32:355–64
    [Google Scholar]
  110. 110.
    Roderburg C, Luedde M, Vargas Cardenas D, Vucur M, Mollnow T et al. 2013. miR-133a mediates TGF-β-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis. J. Hepatol. 58:736–42
    [Google Scholar]
  111. 111.
    Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN. 2019. TGF-β in hepatic stellate cell activation and liver fibrogenesis—updated 2019. Cells 8:1419
    [Google Scholar]
  112. 112.
    Coll M, El Taghdouini A, Perea L, Mannaerts I, Vila-Casadesús M et al. 2015. Integrative miRNA and gene expression profiling analysis of human quiescent hepatic stellate cells. Sci. Rep. 5:11549
    [Google Scholar]
  113. 113.
    Zhao Z, Lin CY, Cheng K. 2019. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl. Res. 214:17–29
    [Google Scholar]
  114. 114.
    Brandon-Warner E, Benbow JH, Swet JH, Feilen NA, Culberson CR et al. 2018. Adeno-associated virus serotype 2 vector-mediated reintroduction of microRNA-19b attenuates hepatic fibrosis. Hum. Gene Ther. 29:674–86
    [Google Scholar]
  115. 115.
    Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y et al. 2011. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLOS ONE 6:e16081
    [Google Scholar]
  116. 116.
    Chen Y, Ou Y, Dong J, Yang G, Zeng Z et al. 2018. Osteopontin promotes collagen I synthesis in hepatic stellate cells by miRNA-129-5p inhibition. Exp. Cell Res. 362:343–48
    [Google Scholar]
  117. 117.
    Lang S, Schnabl B. 2020. Microbiota and fatty liver disease—the known, the unknown, and the future. Cell Host Microbe 28:233–44
    [Google Scholar]
  118. 118.
    Llopis M, Cassard AM, Wrzosek L, Boschat L, Bruneau A et al. 2016. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 65:830–39
    [Google Scholar]
  119. 119.
    Duan Y, Llorente C, Lang S, Brandl K, Chu H et al. 2019. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575:505–11
    [Google Scholar]
  120. 120.
    Rao R. 2009. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology 50:638–44
    [Google Scholar]
  121. 121.
    Chen P, Starkel P, Turner JR, Ho SB, Schnabl B. 2015. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 61:883–94
    [Google Scholar]
  122. 122.
    Wang L, Fouts DE, Starkel P, Hartmann P, Chen P et al. 2016. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 19:227–39
    [Google Scholar]
  123. 123.
    Llorente C, Jepsen P, Inamine T, Wang L, Bluemel S et al. 2017. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat. Commun. 8:837
    [Google Scholar]
  124. 124.
    Couch RD, Dailey A, Zaidi F, Navarro K, Forsyth CB et al. 2015. Alcohol induced alterations to the human fecal VOC metabolome. PLOS ONE 10:e0119362
    [Google Scholar]
  125. 125.
    Schwenger KJ, Clermont-Dejean N, Allard JP. 2019. The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Rep. 1:214–26
    [Google Scholar]
  126. 126.
    Juanola O, Ferrusquia-Acosta J, Garcia-Villalba R, Zapater P, Magaz M et al. 2019. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis. FASEB J. 33:11595–605
    [Google Scholar]
  127. 127.
    Helsley RN, Miyata T, Kadam A, Varadharajan V, Sangwan N et al. 2022. Gut microbial trimethylamine is elevated in alcohol-associated hepatitis and contributes to ethanol-induced liver injury in mice. Elife 11:e76554
    [Google Scholar]
  128. 128.
    Kakiyama G, Hylemon PB, Zhou H, Pandak WM, Heuman DM et al. 2014. Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 306:G929–37
    [Google Scholar]
  129. 129.
    Brandl K, Hartmann P, Jih LJ, Pizzo DP, Argemi J et al. 2018. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J. Hepatol. 69:396–405
    [Google Scholar]
  130. 130.
    Manley S, Ding W. 2015. Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharm. Sin. B 5:158–67
    [Google Scholar]
  131. 131.
    Kema VH, Mojerla NR, Khan I, Mandal P. 2015. Effect of alcohol on adipose tissue: a review on ethanol mediated adipose tissue injury. Adipocyte 4:225–31
    [Google Scholar]
  132. 132.
    Parker R, Kim SJ, Gao B. 2018. Alcohol, adipose tissue and liver disease: mechanistic links and clinical considerations. Nat. Rev. Gastroenterol. Hepatol. 15:50–59
    [Google Scholar]
  133. 133.
    Wei X, Shi X, Zhong W, Zhao Y, Tang Y et al. 2013. Chronic alcohol exposure disturbs lipid homeostasis at the adipose tissue-liver axis in mice: analysis of triacylglycerols using high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling. PLOS ONE 8:e55382
    [Google Scholar]
  134. 134.
    Malhi H, Bronk SF, Werneburg NW, Gores GJ. 2006. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem. 281:12093–101
    [Google Scholar]
  135. 135.
    Tang T, Sui Y, Lian M, Li Z, Hua J. 2013. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death. PLOS ONE 8:e81949
    [Google Scholar]
  136. 136.
    Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. 2003. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Investig. 112:91–100
    [Google Scholar]
  137. 137.
    Sebastian BM, Roychowdhury S, Tang H, Hillian AD, Feldstein AE et al. 2011. Identification of a cytochrome P4502E1/Bid/C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice. J. Biol. Chem. 286:35989–97
    [Google Scholar]
  138. 138.
    Chiang DJ, McCullough AJ. 2014. The impact of obesity and metabolic syndrome on alcoholic liver disease. Clin. Liver Dis. 18:157–63
    [Google Scholar]
  139. 139.
    Ikejima K, Kon K, Yamashina S. 2020. Nonalcoholic fatty liver disease and alcohol-related liver disease: from clinical aspects to pathophysiological insights. Clin. Mol. Hepatol. 26:728–35
    [Google Scholar]
  140. 140.
    Ntandja Wandji LC, Gnemmi V, Mathurin P, Louvet A 2020. Combined alcoholic and non-alcoholic steatohepatitis. JHEP Rep. 2:100101
    [Google Scholar]
  141. 141.
    Voican CS, Njiké-Nakseu M, Boujedidi H, Barri-Ova N, Bouchet-Delbos L et al. 2015. Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int. 35:967–78
    [Google Scholar]
  142. 142.
    Lauterburg BH, Velez ME. 1988. Glutathione deficiency in alcoholics: risk factor for paracetamol hepatotoxicity. Gut 29:1153–57
    [Google Scholar]
  143. 143.
    Moreno C, Langlet P, Hittelet A, Lasser L, Degré D et al. 2010. Enteral nutrition with or without N-acetylcysteine in the treatment of severe acute alcoholic hepatitis: a randomized multicenter controlled trial. J. Hepatol. 53:1117–22
    [Google Scholar]
  144. 144.
    Higuera-de la Tijera F, Servín-Caamaño AI, Cruz-Herrera J, Serralde-Zúñiga AE, Abdo-Francis JM et al. 2014. Treatment with metadoxine and its impact on early mortality in patients with severe alcoholic hepatitis. Ann. Hepatol. 13:343–52
    [Google Scholar]
  145. 145.
    Colell A, García-Ruiz C, Morales A, Ballesta A, Ookhtens M et al. 1997. Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-l-methionine. Hepatology 26:699–708
    [Google Scholar]
  146. 146.
    Miyata T, Nagy LE. 2020. Programmed cell death in alcohol-associated liver disease. Clin. Mol. Hepatol. 26:618–25
    [Google Scholar]
  147. 147.
    Marot A, Singal AK, Moreno C, Deltenre P. 2020. Granulocyte colony-stimulating factor for alcoholic hepatitis: a systematic review and meta-analysis of randomised controlled trials. JHEP Rep. 2:100139
    [Google Scholar]
  148. 148.
    Ventura-Cots M, Argemi J, Jones PD, Lackner C, El Hag M et al. 2022. Clinical, histological and molecular profiling of different stages of alcohol-related liver disease. Gut 71:1856–66
    [Google Scholar]
  149. 149.
    Naveau S, Chollet-Martin S, Dharancy S, Mathurin P, Jouet P et al. 2004. A double-blind randomized controlled trial of infliximab associated with prednisolone in acute alcoholic hepatitis. Hepatology 39:1390–97
    [Google Scholar]
  150. 150.
    Boetticher NC, Peine CJ, Kwo P, Abrams GA, Patel T et al. 2008. A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology 135:1953–60
    [Google Scholar]
  151. 151.
    Saikia P, Bellos D, McMullen MR, Pollard KA, de la Motte C, Nagy LE. 2017. MicroRNA 181b-3p and its target importin α5 regulate toll-like receptor 4 signaling in Kupffer cells and liver injury in mice in response to ethanol. Hepatology 66:602–15
    [Google Scholar]
  152. 152.
    Singal AK, Shah VH. 2019. Current trials and novel therapeutic targets for alcoholic hepatitis. J. Hepatol. 70:305–13
    [Google Scholar]
  153. 153.
    Han SH, Suk KT, Kim DJ, Kim MY, Baik SK et al. 2015. Effects of probiotics (cultured Lactobacillus subtilis/Streptococcus faecium) in the treatment of alcoholic hepatitis: randomized-controlled multicenter study. Eur. J. Gastroenterol. Hepatol. 27:1300–6
    [Google Scholar]
  154. 154.
    Philips CA, Pande A, Shasthry SM, Jamwal KD, Khillan V et al. 2017. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin. Gastroenterol. Hepatol. 15:600–2
    [Google Scholar]
  155. 155.
    Philips CA, Phadke N, Ganesan K, Ranade S, Augustine P 2018. Corticosteroids, nutrition, pentoxifylline, or fecal microbiota transplantation for severe alcoholic hepatitis. Indian J. Gastroenterol. 37:215–25
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-030435
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-030435
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error