Skip to main content

Advertisement

Log in

The story of the Sda antigen and of its cognate enzyme B4GALNT2: What is new?

  • Comprehensive Review Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The structure Siaα2,3(GalNAcβ1,4)Gal- is the epitope of the Sda antigen, which is expressed on the erythrocytes and secretions of the vast majority of Caucasians, carried by N- and O-linked chains of glycoproteins, as well as by glycolipids. Sda is very similar, but not identical, to ganglioside GM2 [Siaα2,3(GalNAcβ1,4)Galβ1,4Glc-Cer]. The Sda synthase β1,4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) exists in a short and a long form, diverging in the aminoterminal domain. The latter has a very long cytoplasmic tail and displays a Golgi- as well as a post-Golgi localization. The biosynthesis of Sda is mutually exclusive with that of the cancer-associated sialyl Lewis antigens, whose structure is Siaα2,3Galβ1,3/4(Fucα1,4/3)GlcNAc-. B4GALNT2 is down-regulated in colon cancer but patients with higher expression survive longer. In experimental systems, B4GALNT2 inhibits colon cancer progression,not only through inhibition of sialyl Lewis antigen biosynthesis. By contrast, in breast cancer B4GALNT2 is associated with malignancy. In colon cancer, the B4GALNT2 gene is regulated by multiple mechanisms, which include miRNA and transcription factor expression, as well as CpG methylation. In addition, Sda/B4GALNT2 regulates the susceptibility to infectious agents, the protection from muscle dystrophy, the activity of immune system in pregnancy and the immune rejection in xenotransplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morton, J.A., Pickles, M.M., Terry, A.M.: The Sda blood group antigen in tissues and body fluids. Vox Sang. 19, 472–482 (1970)

    CAS  PubMed  Google Scholar 

  2. Morton, J.A., Pickles, M.M., Vanhegan, R.I.: The Sda antigen in the human kidney and colon. Immunol. Invest 17, 217–224 (1988)

    Article  CAS  PubMed  Google Scholar 

  3. Renton, P.H., Howell, P., Ikin, E.W., Giles, C.M., Goldsmith, K.L.: Anti Sda: a new blood group antibody. Vox Sang. 13, 493–501 (1967)

    Google Scholar 

  4. Macvie, S.I., Morton, J.A., Pickles, M.M.: The reactions and inheritance of a new blood group antigen. Vox Sang. 13, 485–492 (1967)

    Google Scholar 

  5. Sanger, R., Gavin, J., Tippett, P., Teesdale, P., Eldon, K.: Plant agglutinin for another human blood-group. Lancet 1, 1130 (1971)

    Article  CAS  PubMed  Google Scholar 

  6. Dall’Olio, F., Malagolini, N., Chiricolo, M., Trinchera, M., Harduin-Lepers, A.: The expanding roles of the Sda/Cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2. Biochim. Biophys. Acta 1840, 443–453 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. Donald, A.S., Yates, A.D., Soh, C.P., Morgan, W.T., Watkins, W.M.: A blood group Sda-active pentasaccharide isolated from Tamm-Horsfall urinary glycoprotein. Biochem. Biophys. Res. Commun. 115, 625–631 (1983)

    Article  CAS  PubMed  Google Scholar 

  8. Montiel, M.D., Krzewinski-Recchi, M.A., Delannoy, P., Harduin-Lepers, A.: Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Aca2-3Galb-R b1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: evidence for an unusual extended cytoplasmic domain. Biochem. J. 373, 369–379 (2003)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Blanchard, D., Piller, F., Gillard, B., Marcus, D., Cartron, J.P.: Identification of a novel ganglioside on erythrocytes with blood group Cad specificity. J. Biol. Chem. 260, 7813–7816 (1985)

    Article  CAS  PubMed  Google Scholar 

  10. Capon, C., Maes, E., Michalski, J.C., Leffler, H., Kim, Y.S.: Sda-antigen-like structures carried on core 3 are prominent features of glycans from the mucin of normal human descending colon. Biochem. J 358, 657–664 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Groux-Degroote, S., Vicogne, D., Cogez, V., Schulz, C., Harduin-Lepers, A.: B4GALNT2 Controls Sda and SLex Antigen Biosynthesis in Healthy and Cancer Human Colon. ChemBioChem (2021). https://doi.org/10.1002/cbic.202100363

    Article  PubMed Central  PubMed  Google Scholar 

  12. Serafini-Cessi, F.; Dall'Olio, F. Guinea-pig kidney β-N-acetylgalactosaminyltransferase towards Tamm- Horsfall glycoprotein. Requirement of sialic acid in the acceptor for transferase activity. Biochem. J. 215, 483–489 (1983)

  13. Smith, P.L., Lowe, J.B.: Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the T lymphocyte-specific CT oligosaccharide differentiation antigen. J. Biol. Chem. 269, 15162–15171 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. Lo, P.L., Cabuy, E., Chiricolo, M., Dall’Olio, F.: Molecular Cloning of the Human b1,4 N-Acetylgalactosaminyltransferase Responsible for the Biosynthesis of the Sda Histo-Blood Group Antigen: The Sequence Predicts a Very Long Cytoplasmic Domain. J. Biochem. (Tokyo) 134, 675–682 (2003)

    Article  Google Scholar 

  15. Malagolini, N., Santini, D., Chiricolo, M., Dall’Olio, F.: Biosynthesis and expression of the Sda and sialyl Lewis x antigens in normal and cancer colon. Glycobiology 17, 688–697 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Groux-Degroote, S., Wavelet, C., Krzewinski-Recchi, M.A., Portier, L., Mortuaire, M., Mihalache, A., Trinchera, M., Delannoy, P., Malagolini, N., Chiricolo, M., et al.: B4GALNT2 gene expression controls the biosynthesis of Sda and sialyl Lewis X antigens in healthy and cancer human gastrointestinal tract. Int. J. Biochem. Cell Biol. 53, 442–449 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. Groux-Degroote, S., Schulz, C., Cogez, V., Noel, M., Portier, L., Vicogne, D., Solorzano, C., Dall’Olio, F., Steenackers, A., Mortuaire, M., et al.: The extended cytoplasmic tail of the human B4GALNT2 is critical for its Golgi targeting and post-Golgi sorting. FEBS J. 285, 3442–3463 (2018). https://doi.org/10.1111/febs.14621

    Article  CAS  PubMed  Google Scholar 

  18. Dall’Olio, F., Malagolini, N., Di Stefano, G., Ciambella, M., Serafini-Cessi, F.: Postnatal development of rat colon epithelial cells is associated with changes in the expression of the b 1,4-N- acetylgalactosaminyltransferase involved in the synthesis of Sda antigen and of a 2,6-sialyltransferase activity towards N-acetyllactosamine. Biochem. J. 270, 519–524 (1990)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Robbe-Masselot, C., Maes, E., Rousset, M., Michalski, J.C., Capon, C.: Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract. Glycoconj. J. 26, 397–413 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Malagolini, N., Dall’Olio, F., Serafini-Cessi, F.: UDP-GalNAc:NeuAc a 2,3Gal b-R (GalNAc to Gal) b 1,4-N- acetylgalactosaminyltransferase responsible for the Sda specificity in human colon carcinoma CaCo-2 cell line. Biochem. Biophys. Res. Commun. 180, 681–686 (1991)

    Article  CAS  PubMed  Google Scholar 

  21. Malagolini, N., Dall’Olio, F., Di Stefano, G., Minni, F., Marrano, D., Serafini-Cessi, F.: Expression of UDP-GalNAc:NeuAc a2,3Gal b-R beta 1,4(GalNAc to Gal) N-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen in human large intestine and colorectal carcinomas. Cancer Res. 49, 6466–6470 (1989)

    CAS  PubMed  Google Scholar 

  22. Dohi, T., Yuyama, Y., Natori, Y., Smith, P.L., Lowe, J.B., Oshima, M.: Detection of N-acetylgalactosaminyltransferase mRNA which determines expression of Sda blood group carbohydrate structure in human gastrointestinal mucosa and cancer. Int. J. Cancer 67, 626–631 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. Robbe-Masselot, C., Herrmann, A., Maes, E., Carlstedt, I., Michalski, J.C., Capon, C.: Expression of a core 3 disialyl-Lex hexasaccharide in human colorectal cancers: a potential marker of malignant transformation in colon. J. Proteome. Res. 8, 702–711 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. Dohi, T., Ohta, S., Hanai, N., Yamaguchi, K., Oshima, M.: Sialylpentaosylceramide detected with anti-GM2 monoclonal antibody. Structural characterization and complementary expression with GM2 in gastric cancer and normal gastric mucosa. J. Biol. Chem. 265, 7880–7885 (1990)

  25. Dall'Olio, F., Pucci, M., Malagolini, N.: The Cancer-Associated Antigens Sialyl Lewisa/x and Sda: Two Opposite Faces of Terminal Glycosylation. Cancers. (Basel) 13(21), 5273 (2021). https://doi.org/10.3390/cancers13215273

  26. Kawamura, Y.I., Kawashima, R., Fukunaga, R., Hirai, K., Toyama-Sorimachi, N., Tokuhara, M., Shimizu, T., Dohi, T.: Introduction of Sda carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Res. 65, 6220–6227 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Pucci, M., Gomes Ferreira, I., Orlandani, M., Malagolini, N., Ferracin, M., Dall'Olio, F.: High Expression of the Sda Synthase B4GALNT2 Associates with Good Prognosis and Attenuates Stemness in Colon Cancer. Cells  9(4), 948 (2020). https://doi.org/10.3390/cells9040948

  28. Pucci, M., Malagolini, N., Dall'Olio, F.: Glycosyltransferase B4GALNT2 as a Predictor of Good Prognosis in Colon Cancer: Lessons from Databases. Int. J. Mol. Sci. 22(9), 4331 (2021). https://doi.org/10.3390/ijms22094331

  29. Low, E.N.D., Mokhtar, N.M., Wong, Z., Raja Ali, R.A.: Colonic Mucosal Transcriptomic Changes in Patients with Long-Duration Ulcerative Colitis Revealed Colitis-Associated Cancer Pathways. J. Crohns. Colitis. 13(6), 755–763 (2019). https://doi.org/10.1093/ecco-jcc/jjz002

  30. Trinchera, M., Aronica, A., Dall'Olio, F.: Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers. Biology (Basel) 6(1), 16 (2017). https://doi.org/10.3390/biology6010016

  31. Madunic, K., Mayboroda, O.A., Zhang, T., Weber, J., Boons, G.J., Morreau, H., van, V.R., van, W.T., Lageveen-Kammeijer, G.S.M., Wuhrer, M.: Specific (sialyl-)Lewis core 2 O-glycans differentiate colorectal cancer from healthy colon epithelium. Theranostics. 12, 4498–4512 (2022). https://doi.org/10.7150/thno.72818

  32. Kawamura, Y.I., Adachi, Y., Curiel, D.T., Kawashima, R., Kannagi, R., Nishimoto, N., Dohi, T.: Therapeutic adenoviral gene transfer of a glycosyltransferase for prevention of peritoneal dissemination and metastasis of gastric cancer. Cancer Gene Ther. 21, 427–433 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Trinchera, M., Malagolini, N., Chiricolo, M., Santini, D., Minni, F., Caretti, A., Dall’Olio, F.: The biosynthesis of the selectin-ligand sialyl Lewis x in colorectal cancer tissues is regulated by fucosyltransferase VI and can be inhibited by an RNA interference-based approach. Int. J. Biochem. Cell Biol. 43, 130–139 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. Pucci, M., Gomes, F.I., Malagolini, N., Ferracin, M., Dall'Olio, F.: The Sda Synthase B4GALNT2 Reduces Malignancy and Stemness in Colon Cancer Cell Lines Independently of Sialyl Lewis X Inhibition. Int. J. Mol. Sci.  21(18), 6558 (2020). https://doi.org/10.3390/ijms21186558

  35. Qusa, M.H., Abdelwahed, K.S., Siddique, A.B., El Sayed, K.A.: Comparative Gene Signature of (-)-Oleocanthal Formulation Treatments in Heterogeneous Triple Negative Breast Tumor Models: Oncological Therapeutic Target Insights. Nutrients.  13(5), 1706 (2021). https://doi.org/10.3390/nu13051706

  36. Yu, P., Zhu, L., Cui, K., Du, Y., Zhang, C., Ma, W., Guo, J.: B4GALNT2 Gene Promotes Proliferation, and Invasiveness and Migration Abilities of Model Triple Negative Breast Cancer (TNBC) Cells by Interacting With HLA-B Protein. Front Oncol. 11, 722828 (2021). https://doi.org/10.3389/fonc.2021.722828

    Article  PubMed Central  PubMed  Google Scholar 

  37. Pucci, M., Duca, M., Malagolini, N., Dall'Olio, F.: Glycosyltransferases in Cancer: Prognostic Biomarkers of Survival in Patient Cohorts and Impact on Malignancy in Experimental Models. Cancers. (Basel) 14, 2128 (2022). https://doi.org/10.3390/cancers14092128

  38. Stenfelt, L., Hellberg, A., Moller, M., Thornton, N., Larson, G., Olsson, M.L.: Missense mutations in the C-terminal portion of the B4GALNT2-encoded glycosyltransferase underlying the Sda- phenotype. Biochem. Biophys. Rep. 19, 100659 (2019). https://doi.org/10.1016/j.bbrep.2019.100659

    Article  PubMed Central  PubMed  Google Scholar 

  39. Li, Y., Cheng, Y., Consolato, F., Schiano, G., Chong, M.R., Pietzner, M., Nguyen, N.Q.H., Scherer, N., Biggs, M.L., Kleber, M.E., et al.: Genome-wide studies reveal factors associated with circulating uromodulin and its relations with complex diseases. JCI. Insight. 7, e157035 (2022). https://doi.org/10.1172/jci.insight.157035

  40. Stenfelt, L.; Nilsson, J.; Hellberg, A.; Liew, Y.W.; Morrison, J.; Larson, G.; Olsson, M.L. Glycoproteomic and Phenotypic Elucidation of B4GALNT2 Expression Variants in the SID Histo-Blood Group System. Int. J. Mol. Sci. 23(7), 3936 (2022). https://doi.org/10.3390/ijms23073936

  41. Wang, H.R., Hsieh, C.Y., Twu, Y.C., Yu, L.C.: Expression of the human Sda b-1,4-N-acetylgalactosaminyltransferase II gene is dependent on the promoter methylation status. Glycobiology 18, 104–113 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. Kawamura, Y.I., Toyota, M., Kawashima, R., Hagiwara, T., Suzuki, H., Imai, K., Shinomura, Y., Tokino, T., Kannagi, R., Dohi, T.: DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology 135, 142–151 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. Wavelet-Vermuse, C., Groux-Degroote, S., Vicogne, D., Cogez, V., Venturi, G., Trinchera, M., Brysbaert, G., Krzewinski-Recchi, M.A., Bachir, E.H., Schulz, C., et al.: Analysis of the proximal promoter of the human colon-specific B4GALNT2 (Sda synthase) gene: B4GALNT2 is transcriptionally regulated by ETS1. Biochim. Biophys. Acta Gene Regul. Mech. 1864(11–12) 194747 (2021). https://doi.org/10.1016/j.bbagrm.2021.194747

  44. Cramer, M.L., Xu, R., Martin, P.T.: Soluble Heparin Binding EGF-like Growth Factor (HB-EGF) is a regulator of GALGT2 expression and GALGT2-dependent muscle and neuromuscular phenotypes. Mol. Cell Biol. 39, e00140–19 (2019). https://doi.org/10.1128/MCB.00140-19

  45. Johnsen, J.M., Levy, G.G., Westrick, R.J., Tucker, P.K., Ginsburg, D.: The endothelial-specific regulatory mutation, Mvwf1, is a common mouse founder allele. Mamm. Genome 19, 32–40 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Johnsen, J.M., Teschke, M., Pavlidis, P., McGee, B.M., Tautz, D., Ginsburg, D., Baines, J.F.: Selection on cis-regulatory variation at B4galnt2 and its influence on von Willebrand factor in house mice. Mol. Biol. Evol. 26, 567–578 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. Linnenbrink, M., Johnsen, J.M., Montero, I., Brzezinski, C.R., Harr, B., Baines, J.F.: Long-term balancing selection at the blood group-related gene B4galnt2 in the genus Mus (Rodentia; Muridae). Mol. Biol. Evol. 28, 2999–3003 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Staubach, F., Kunzel, S., Baines, A.C., Yee, A., McGee, B.M., Backhed, F., Baines, J.F., Johnsen, J.M.: Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice. ISME. J. 6, 1345–1355 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Rausch, P., Steck, N., Suwandi, A., Seidel, J.A., Kunzel, S., Bhullar, K., Basic, M., Bleich, A., Johnsen, J.M., Vallance, B.A., et al.: Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection. PLoS. Pathog. 11, e1005008 (2015). https://doi.org/10.1371/journal.ppat.1005008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wong, H.H., Fung, K., Nicholls, J.M.: MDCK-B4GalNT2 cells disclose a a2,3-sialic acid requirement for the 2009 pandemic H1N1 A/California/04/2009 and NA aid entry of A/WSN/33. Emerg. Microbes. Infect. 8, 1428–1437 (2019). https://doi.org/10.1080/22221751.2019.1665971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Heaton, B.E., Kennedy, E.M., Dumm, R.E., Harding, A.T., Sacco, M.T., Sachs, D., Heaton, N.S.: A CRISPR Activation Screen Identifies a Pan-avian Influenza Virus Inhibitory Host Factor. Cell Rep. 20(7), 1503–1512 (2017). https://doi.org/10.1016/j.celrep.2017.07.060

  52. Karlsson, N.G., Olson, F.J., Jovall, P.A., Andersch, Y., Enerback, L., Hansson, G.C.: Identification of transient glycosylation alterations of sialylated mucin oligosaccharides during infection by the rat intestinal parasite Nippostrongylus brasiliensis. Biochem. J. 350, 805–814 (2000)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Holmen, J.M., Olson, F.J., Karlsson, H., Hansson, G.C.: Two glycosylation alterations of mouse intestinal mucins due to infection caused by the parasite Nippostrongylus brasiliensis. Glycoconj. J. 19, 67–75 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. Tsubokawa, D., Goso, Y., Kawashima, R., Ota, H., Nakamura, T., Nakamura, K., Sato, N., Kurihara, M., Dohi, T., Kawamura, Y.I., et al.: The monoclonal antibody HCM31 specifically recognises the Sda tetrasaccharide in goblet cell mucin. FEBS Open Bio 2, 223–233 (2012). https://doi.org/10.1016/j.fob.2012.07.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Nguyen, H.H., Jayasinha, V., Xia, B., Hoyte, K., Martin, P.T.: Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc. Natl. Acad. Sci. U.S.A 99, 5616–5621 (2022)

  56. Xu, R., Chandrasekharan, K., Yoon, J.H., Camboni, M., Martin, P.T.: Overexpression of the cytotoxic T cell (CT) carbohydrate inhibits muscular dystrophy in the dyW mouse model of congenital muscular dystrophy 1A. Am. J. Pathol. 171, 181–199 (2007)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Xu, R., Camboni, M., Martin, P.T.: Postnatal overexpression of the CT GalNAc transferase inhibits muscular dystrophy in mdx mice without altering muscle growth or neuromuscular development: evidence for a utrophin-independent mechanism. Neuromuscul. Disord. 17, 209–220 (2007)

    Article  PubMed Central  PubMed  Google Scholar 

  58. Xu, R., Devries, S., Camboni, M., Martin, P.T.: Overexpression of Galgt2 reduces dystrophic pathology in the skeletal muscles of alpha sarcoglycan-deficient mice. Am. J. Pathol. 175, 235–247 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Thomas, P.J., Xu, R., Martin, P.T.: B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I. Am. J. Pathol. 186(9), 2429-2448 (2016). https://doi.org/10.1016/j.ajpath.2016.05.021

  60. Jayasinha, V., Hoyte, K., Xia, B., Martin, P.T.: Overexpression of the CT GalNAc transferase inhibits muscular dystrophy in a cleavage-resistant dystroglycan mutant mouse. Biochem. Biophys. Res. Commun. 302, 831–836 (2003)

    Article  CAS  PubMed  Google Scholar 

  61. Martin, P.T., Xu, R., Rodino-Klapac, L.R., Oglesbay, E., Camboni, M., Montgomery, C.L., Shontz, K., Chicoine, L.G., Clark, K.R., Sahenk, Z., et al.: Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice. Am. J. Physiol Cell Physiol 296, C476–C488 (2009)

    Article  CAS  PubMed  Google Scholar 

  62. Martin, P.T., Zygmunt, D.A., Ashbrook, A., Hamilton, S., Packer, D., Birch, S.M., Bettis, A.K., Balog-Alvarez, C.J., Guo, L.J., Nghiem, P.P. et al.: Short-term treatment of golden retriever muscular dystrophy (GRMD) dogs with rAAVrh74.MHCK7.GALGT2 induces muscle glycosylation and utrophin expression but has no significant effect on muscle strength. PLoS. One. 16(3), e0248721 (2021). https://doi.org/10.1371/journal.pone.0248721

  63. Klisch, K., Contreras, D.A., Sun, X., Brehm, R., Bergmann, M., Alberio, R.: The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama. Reproduction 142, 667–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  64. Easton, R.L., Patankar, M.S., Lattanzio, F.A., Leaven, T.H., Morris, H.R., Clark, G.F., Dell, A.: Structural Analysis of Murine Zona Pellucida Glycans. Evidence for the expression of core 2-type o-glycans and the sd(a) antigen. J. Biol. Chem. 275, 7731–7742 (2000)

  65. Klisch, K., Jeanrond, E., Pang, P.C., Pich, A., Schuler, G., Dantzer, V., Kowalewski, M.P., Dell, A.: A tetraantennary glycan with bisecting N-acetylglucosamine and the Sd(a) antigen is the predominant N-glycan on bovine pregnancy-associated glycoproteins. Glycobiology 18, 42–52 (2008)

    Article  CAS  PubMed  Google Scholar 

  66. Li, P.T., Liao, C.J., Wu, W.G., Yu, L.C., Chu, S.T.: Progesterone-regulated B4galnt2 expression is a requirement for embryo implantation in mice. Fertil. Steril. 95(2404–9), 2409 (2011)

    Google Scholar 

  67. Li, P.T., Liao, C.J., Yu, L.C., Wu, W.G., Chu, S.T.: Localization of B4GALNT2 and its role in mouse embryo attachment. Fertil. Steril. 97, 1206–1212 (2012)

    Article  CAS  PubMed  Google Scholar 

  68. Lee, C.L., Pang, P.C., Yeung, W.S., Tissot, B., Panico, M., Lao, T.T., Chu, I.K., Lee, K.F., Chung, M.K., Lam, K.K., et al.: Effects of differential glycosylation of glycodelins on lymphocyte survival. J. Biol. Chem. 284, 15084–15096 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Lee, C.L., Chiu, P.C., Pang, P.C., Chu, I.K., Lee, K.F., Koistinen, R., Koistinen, H., Seppala, M., Morris, H.R., Tissot, B., et al.: Glycosylation failure extends to glycoproteins in gestational diabetes mellitus: evidence from reduced alpha2-6 sialylation and impaired immunomodulatory activities of pregnancy-related glycodelin-A. Diabetes 60, 909–917 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Ben, J.S., Ruesche, J., Sarry, J., Woloszyn, F., Lassoued, N., Fabre, S.: The high prolificacy of D’man sheep is associated with the segregation of the FecL(L) mutation in the B4GALNT2 gene. Reprod. Domest. Anim (2018). https://doi.org/10.1111/rda.13391

    Article  Google Scholar 

  71. Guo, X., Wang, X., Liang, B., Di, R, Liu, Q., Hu, W., He, X., Zhang, J., Zhang, X., Chu, M.: Molecular Cloning of the B4GALNT2 Gene and Its Single Nucleotide Polymorphisms Association with Litter Size in Small Tail Han Sheep. Animals (Basel) 8, 160 (2018). https://doi.org/10.3390/ani8100160

  72. Byrne, G., Ahmad-Villiers, S., Du, Z., McGregor, C.: B4GALNT2 and xenotransplantation: A newly appreciated xenogeneic antigen. Xenotransplantation. e12394 (2018). https://doi.org/10.1111/xen.12394

  73. Zhao, C., Cooper, D.K.C., Dai, Y., Hara, H., Cai, Z., Mou, L.: The Sda and Cad glycan antigens and their glycosyltransferase, beta1,4GalNAcT-II, in xenotransplantation. Xenotransplantation 25, e12386 (2018). https://doi.org/10.1111/xen.12386

    Article  PubMed  Google Scholar 

  74. Byrne, G.W., Du, Z., Stalboerger, P., Kogelberg, H., McGregor, C.G.: Cloning and expression of porcine beta1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation 21, 543–554 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  75. Estrada, J.L., Martens, G., Li, P., Adams, A., Newell, K.A., Ford, M.L., Butler, J.R., Sidner, R., Tector, M., Tector, J.: Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22, 194–202 (2015)

    Article  PubMed Central  PubMed  Google Scholar 

  76. Feng, H., Li, T., Du, J., Xia, Q., Wang, L., Chen, S., Zhu, L., Pan, D., Wang, Y., Chen, G.: Both Natural and Induced Anti-Sda Antibodies Play Important Roles in GTKO Pig-to-Rhesus Monkey Xenotransplantation. Front Immunol. 13, 849711 (2022). https://doi.org/10.3389/fimmu.2022.849711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Fischer, K., Rieblinger, B., Hein, R., Sfriso, R., Zuber, J., Fischer, A., Klinger, B., Liang, W., Flisikowski, K., Kurome, M., et al.: Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2. Xenotransplantation 27,(2020). https://doi.org/10.1111/xen.12560

  78. Wang, Z.Y., Li, P., Butler, J.R., Blankenship, R.L., Downey, S.M., Montgomery, J.B., Nagai, S., Estrada, J.L., Tector, M.F., Tector, A.J.: Immunogenicity of Renal Microvascular Endothelial Cells From Genetically Modified Pigs. Transplantation 100, 533–537 (2016). https://doi.org/10.1097/TP.0000000000001070

    Article  CAS  PubMed  Google Scholar 

  79. Yilmaz, S., Sahin, T., Saglam, K.: What Are the Immune Obstacles to Liver Xenotransplantation Which Is Promising for Patients with Hepatocellular Carcinoma? J. Gastrointest. Cancer 51, 1209–1214 (2020). https://doi.org/10.1007/s12029-020-00495-9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Dall’Olio.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duca, M., Malagolini, N. & Dall’Olio, F. The story of the Sda antigen and of its cognate enzyme B4GALNT2: What is new?. Glycoconj J 40, 123–133 (2023). https://doi.org/10.1007/s10719-022-10089-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10089-1

Keywords

Navigation