Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 28, 2022

Dysfunctional microglia and tau pathology in Alzheimer’s disease

  • Gunel Ayyubova ORCID logo EMAIL logo

Abstract

Extensive human studies and animal models show that chronic immune system stimulation involving microglia, inflammasome, complement activation, synthesis of cytokines, and reactive oxygen species exacerbates neurodegeneration in Alzheimer’s disease (AD) and other tauopathies. Abnormalities in tau, Aβ, and microglial activation are frequently observed in dementia patients and indicate that these elements may work in concert to cause cognitive impairment. Contradicting reports from postmortem studies demonstrating the presence of Aβ aggregates in the brains of cognitively healthy individuals, as well as other investigations, show that tau aggregation is more strongly associated with synapse loss, neurodegeneration, and cognitive decline than amyloid pathology. Tau association with microtubules’ surface promotes their growth and maintains their assembly, dynamicity, and stability. In contrast, the reduced affinity of hyperphosphorylated and mislocalized tau to microtubules leads to axonal deficits and neurofibrillary tangles (NFTs). Loss of microglial neuroprotective and phagocytic functions, as indicated by the faulty clearance of amyloid plaques, as well as correlations between microglial activation and tau tangle spread, all demonstrate the critical involvement of malfunctioning microglia in driving tau propagation. This review discusses the recent reports on the contribution of microglial cells to the development and progression of tau pathology. The detailed study of pathogenic mechanisms involved in interactions between neuroinflammation and tau spread is critical in identifying the targets for efficacious treatment strategies in AD.


Corresponding author: Gunel Ayyubova, Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku 1022, Azerbaijan, E-mail:

  1. Author contributions: Gunel Ayyubova has entirely done all work related to this manuscript.

  2. Research funding: None declared.

  3. Conflict of interest statement: No conflicts of interest regarding this article to be declared.

  4. Ethical approval: Not applicable.

  5. Informed consent statement: Not applicable.

References

Alzheimer’s disease facts and figures (2020). Alzheimer’s Dementia 16: 391–460.10.1002/alz.12068Search in Google Scholar PubMed

Ahmed, T., Van der Jeugd, A., Blum, D., Galas, M.-C., D’Hooge, R., Buee, L., and Balschun, D. (2014). Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol. Aging 35: 2474–2478, https://doi.org/10.1016/j.neurobiolaging.2014.05.005.Search in Google Scholar PubMed

Annadurai, N., De Sanctis, J.B., Hajdúch, M., and Das, V. (2021). Tau secretion and propagation: perspectives for potential preventive interventions in Alzheimer’s disease and other tauopathies. Exp. Neurol. 343: 113756, https://doi.org/10.1016/j.expneurol.2021.113756.Search in Google Scholar PubMed

Asai, H., Ikezu, S., Tsunoda, S., Medalla, M., Luebke, J., Haydar, T., Wolozin, B., Butovsky, O., Kügler, S., and Ikezu, T. (2015). Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18: 1584–1593, https://doi.org/10.1038/nn.4132.Search in Google Scholar PubMed PubMed Central

Barthélemy, N.R., Bateman, R.J., Hirtz, C., Marin, P., Becher, F., Sato, C., Gabelle, A., and Lehmann, S. (2020). Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimer’s Res. Ther. 12: 1–11, https://doi.org/10.1186/s13195-020-00596-4.Search in Google Scholar PubMed PubMed Central

Bemiller, S.M., McCray, T.J., Allan, K., Formica, S.V., Xu, G., Wilson, G., Kokiko-Cochran, O.N., Crish, S.D., Lasagna-Reeves, C.A., Ransohoff, R.M., et al.. (2017). TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener. 12: 74, https://doi.org/10.1186/s13024-017-0216-6.Search in Google Scholar PubMed PubMed Central

Blennow, K. and Hampel, H. (2003). CSF markers for incipient Alzheimer’s disease. Lancet Neurol. 2: 605–613, https://doi.org/10.1016/s1474-4422(03)00530-1.Search in Google Scholar PubMed

Boban, M., Leko, M.B., Miškić, T., Hof, P.R., and Šimić, G. (2019). Human neuroblastoma SH-SY5Y cells treated with okadaic acid express phosphorylated high molecular weight tau-immunoreactive protein species. J. Neurosci. Methods 319: 60–68, https://doi.org/10.1016/j.jneumeth.2018.09.030.Search in Google Scholar PubMed PubMed Central

Bolós, M., Llorens-Martín, M., Jurado-Arjona, J., Hernández, F., Rábano, A., and Avila, J. (2016). Direct evidence of internalization of tau by microglia in vitro and in vivo. J. Alzheim. Dis. 50: 77–87.10.3233/JAD-150704Search in Google Scholar PubMed

Bolós, M., Llorens-Martín, M., Perea, J.R., Jurado-Arjona, J., Rábano, A., Hernández, F., and Avila, J. (2017). Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol. Neurodegener. 12: 59.10.1186/s13024-017-0200-1Search in Google Scholar PubMed PubMed Central

Braak, H. and Del Tredici, K. (2018). Spreading of tau pathology in sporadic Alzheimer’s disease along cortico-cortical top-down connections. Cerebr. Cortex 28: 3372–3384, https://doi.org/10.1093/cercor/bhy152.Search in Google Scholar PubMed PubMed Central

Brelstaff, J.H., Mason, M., Katsinelos, T., McEwan, W.A., Ghetti, B., Tolkovsky, A.M., and Spillantini, M.G. (2021). Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates. Sci. Adv. 7: 4980, https://doi.org/10.1126/sciadv.abg4980.Search in Google Scholar PubMed PubMed Central

Brunello, C.A., Yan, X., and Huttunen, H.J. (2016). Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules. Sci. Rep. 6: 1–13, https://doi.org/10.1038/srep30498.Search in Google Scholar PubMed PubMed Central

Brunello, C.A., Merezhko, M., Uronen, R.-L., and Huttunen, H.J. (2020). Mechanisms of secretion and spreading of pathological tau protein. Cell. Mol. Life Sci. 77: 1721–1744, https://doi.org/10.1007/s00018-019-03349-1.Search in Google Scholar PubMed PubMed Central

Caceres, A. and Kosik, K.S. (1990). Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343: 461–463, https://doi.org/10.1038/343461a0.Search in Google Scholar PubMed

Calafate, S., Flavin, W., Verstreken, P., and Moechars, D. (2016). Loss of Bin1 promotes the propagation of tau pathology. Cell Rep. 17: 931–940, https://doi.org/10.1016/j.celrep.2016.09.063.Search in Google Scholar PubMed

Cardona, A.E., Pioro, E.P., Sasse, M.E., Kostenko, V., Cardona, S.M., Dijkstra, I.M., Huang, D., Kidd, G., Dombrowski, S., Dutta, R., et al.. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9: 917–924, https://doi.org/10.1038/nn1715.Search in Google Scholar PubMed

Carr, F. (2015). Tau distributors. Nat. Rev. Neurosci. 16: 702–703, https://doi.org/10.1038/nrn4056.Search in Google Scholar PubMed

Casali, B.T. and Reed-Geaghan, E.G. (2021). Microglial function and regulation during development, homeostasis and Alzheimer’s disease. Cells 10: 957, https://doi.org/10.3390/cells10040957.Search in Google Scholar PubMed PubMed Central

Chen, Y. and Colonna, M. (2022). Two-faced behavior of microglia in Alzheimer’s disease. Nat. Neurosci. 25: 3–4, https://doi.org/10.1038/s41593-021-00963-w.Search in Google Scholar PubMed

Chidambaram, H., Das, R., and Chinnathambi, S. (2020). Interaction of Tau with the chemokine receptor, CX3CR1 and its effect on microglial activation, migration and proliferation. Cell Biosci. 10: 109, https://doi.org/10.1186/s13578-020-00474-4.Search in Google Scholar PubMed PubMed Central

Cohn, W., Melnik, M., Huang, C., Teter, B., Chandra, S., Zhu, C., McIntire, L.B., John, V., Gylys, K.H., and Bilousova, T. (2021). Multi-omics analysis of microglial extracellular vesicles from human Alzheimer’s disease brain tissue reveals disease associated signatures. Front. Pharmacol. 12: 766082, https://doi.org/10.3389/fphar.2021.766082.Search in Google Scholar PubMed PubMed Central

Coughlin, D.G. and Litvan, I. (2020). Progressive supranuclear palsy: advances in diagnosis and management. Park. Relat. Disord. 73: 105–116, https://doi.org/10.1016/j.parkreldis.2020.04.014.Search in Google Scholar PubMed PubMed Central

Cousins, K.A., Phillips, J.S., Irwin, D.J., Lee, E.B., Wolk, D.A., Shaw, L.M., Zetterberg, H., Blennow, K., Burke, S.E., and Kinney, N.G. (2021). ATN incorporating cerebrospinal fluid neurofilament light chain detects frontotemporal lobar degeneration. Alzheimer’s Dementia 17: 822–830, https://doi.org/10.1002/alz.12233.Search in Google Scholar PubMed PubMed Central

Crotti, A., Sait, H.R., McAvoy, K.M., Estrada, K., Ergun, A., Szak, S., Marsh, G., Jandreski, L., Peterson, M., Reynolds, T.L., et al.. (2019). BIN1 favors the spreading of Tau via extracellular vesicles. Sci. Rep. 9: 9477, https://doi.org/10.1038/s41598-019-45676-0.Search in Google Scholar PubMed PubMed Central

Cruz, A., Verma, M., and Wolozin, B. (2019). The pathophysiology of tau and stress granules in disease. Adv. Exp. Med. Biol. 1184: 359–372, https://doi.org/10.1007/978-981-32-9358-8_26.Search in Google Scholar PubMed PubMed Central

d’Errico, P., Ziegler-Waldkirch, S., Aires, V., Hoffmann, P., Mezö, C., Erny, D., Monasor, L.S., Liebscher, S., Ravi, V.M., Joseph, K., et al.. (2022). Microglia contribute to the propagation of Aβ into unaffected brain tissue. Nat. Neurosci. 25: 20–25, https://doi.org/10.1038/s41593-021-00951-0.Search in Google Scholar PubMed PubMed Central

Dujardin, S., Bégard, S., Caillierez, R., Lachaud, C., Delattre, L., Carrier, S., Loyens, A., Galas, M.-C., Bousset, L., Melki, R., et al.. (2014). Ectosomes: a new mechanism for non-exosomal secretion of tau protein. PLoS One 9: e100760, https://doi.org/10.1371/journal.pone.0100760.Search in Google Scholar PubMed PubMed Central

Flavin, W.P., Bousset, L., Green, Z.C., Chu, Y., Skarpathiotis, S., Chaney, M.J., Kordower, J.H., Melki, R., and Campbell, E.M. (2017). Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins. Acta Neuropathol. 134: 629–653, https://doi.org/10.1007/s00401-017-1722-x.Search in Google Scholar PubMed

Ghosh, S. and Geahlen, R.L. (2015). Stress granules modulate SYK to cause microglial cell dysfunction in Alzheimer’s disease. EBioMedicine 2: 1785–1798, https://doi.org/10.1016/j.ebiom.2015.09.053.Search in Google Scholar PubMed PubMed Central

Gibbons, G.S., Banks, R.A., Kim, B., Xu, H., Changolkar, L., Leight, S.N., Riddle, D.M., Li, C., Gathagan, R.J., and Brown, H.J. (2017). GFP-mutant human tau transgenic mice develop Tauopathy following CNS injections of Alzheimer’s brain-derived pathological tau or synthetic mutant human tau fibrils. J. Neurosci. 37: 11485–11494, https://doi.org/10.1523/jneurosci.2393-17.2017.Search in Google Scholar

Gonçalves, R.A., Wijesekara, N., Fraser, P.E., and De Felice, F.G. (2020). Behavioral abnormalities in knockout and humanized tau mice. Front. Endocrinol. 11: 124.10.3389/fendo.2020.00124Search in Google Scholar PubMed PubMed Central

Gyoneva, S., Hosur, R., Gosselin, D., Zhang, B., Ouyang, Z., Cotleur, A.C., Peterson, M., Allaire, N., Challa, R., Cullen, P., et al.. (2019). Cx3cr1-deficient microglia exhibit a premature aging transcriptome. Life Sci. Alliance 2: e201900453, https://doi.org/10.26508/lsa.201900453.Search in Google Scholar PubMed PubMed Central

Hampel, H., Blennow, K., Shaw, L.M., Hoessler, Y.C., Zetterberg, H., and Trojanowski, J.Q. (2010). Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp. Gerontol. 45: 30–40, https://doi.org/10.1016/j.exger.2009.10.010.Search in Google Scholar PubMed PubMed Central

Han, P., Serrano, G., Beach, T.G., Caselli, R.J., Yin, J., Zhuang, N., and Shi, J. (2017). A quantitative analysis of brain soluble tau and the tau secretion factor. J. Neuropathol. Exp. Neurol. 76: 44–51, https://doi.org/10.1093/jnen/nlw105.Search in Google Scholar PubMed PubMed Central

Harrison, J.K., Jiang, Y., Chen, S., Xia, Y., Maciejewski, D., McNamara, R.K., Streit, W.J., Salafranca, M.N., Adhikari, S., Thompson, D.A., et al.. (1998). Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. U.S.A. 95: 10896–10901, https://doi.org/10.1073/pnas.95.18.10896.Search in Google Scholar PubMed PubMed Central

He, Y.J., Wei, P.R., Wu, Q.Y., Zhang, X.Y., Zhang, X.M., Liu, X.J., and Wang, F. (2016). ApoE4 increases glycogen synthase kinase 3β expression and Tau phosphorylation in U87 cells. Nan Fang Yi Ke Da Xue Xue Bao 36: 904–908.Search in Google Scholar

Heneka, M.T., Kummer, M.P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T.-C., et al.. (2013). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493: 674–678, https://doi.org/10.1038/nature11729.Search in Google Scholar PubMed PubMed Central

Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M., et al.. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14: 388–405, https://doi.org/10.1016/s1474-4422(15)70016-5.Search in Google Scholar PubMed PubMed Central

Hickman, S., Izzy, S., Sen, P., Morsett, L., and El Khoury, J. (2018). Microglia in neurodegeneration. Nat. Neurosci. 21: 1359–1369, https://doi.org/10.1038/s41593-018-0242-x.Search in Google Scholar PubMed PubMed Central

Holler, C.J., Davis, P.R., Beckett, T.L., Platt, T.L., Webb, R.L., Head, E., and Murphy, M.P. (2014). Bridging integrator 1 (BIN1) protein expression increases in the Alzheimer’s disease brain and correlates with neurofibrillary tangle pathology. J. Alzheimers Dis. 42: 1221–1227.10.3233/JAD-132450Search in Google Scholar PubMed PubMed Central

Holmes, B.B., Furman, J.L., Mahan, T.E., Yamasaki, T.R., Mirbaha, H., Eades, W.C., Belaygorod, L., Cairns, N.J., Holtzman, D.M., and Diamond, M.I. (2014). Proteopathic tau seeding predicts tauopathy in vivo. Proc. Natl. Acad. Sci. U. S. A. 111: 4376–4385, https://doi.org/10.1073/pnas.1411649111.Search in Google Scholar PubMed PubMed Central

Hoover, B.R., Reed, M.N., Su, J., Penrod, R.D., Kotilinek, L.A., Grant, M.K., Pitstick, R., Carlson, G.A., Lanier, L.M., Yuan, L.L., et al.. (2010). Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68: 1067–1081, https://doi.org/10.1016/j.neuron.2010.11.030.Search in Google Scholar PubMed PubMed Central

Ising, C., Venegas, C., Zhang, S., Scheiblich, H., Schmidt, S.V., Vieira-Saecker, A., Schwartz, S., Albasset, S., McManus, R.M., and Tejera, D. (2019). NLRP3 inflammasome activation drives tau pathology. Nature 575: 669–673, https://doi.org/10.1038/s41586-019-1769-z.Search in Google Scholar PubMed PubMed Central

Janelidze, S., Stomrud, E., Smith, R., Palmqvist, S., Mattsson, N., Airey, D.C., Proctor, N.K., Chai, X., Shcherbinin, S., and Sims, J.R. (2020). Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat. Commun. 11: 1–12, https://doi.org/10.1038/s41467-020-15436-0.Search in Google Scholar PubMed PubMed Central

Janelidze, S., Berron, D., Smith, R., Strandberg, O., Proctor, N.K., Dage, J.L., Stomrud, E., Palmqvist, S., Mattsson-Carlgren, N., and Hansson, O. (2021). Associations of plasma phospho-tau217 levels with tau positron emission tomography in early Alzheimer disease. JAMA Neurol. 78: 149, https://doi.org/10.1001/jamaneurol.2020.4201.Search in Google Scholar PubMed PubMed Central

Jansen, I.E., Savage, J.E., Watanabe, K., Bryois, J., Williams, D.M., Steinberg, S., Sealock, J., Karlsson, I.K., Hägg, S., Athanasiu, L., et al.. (2019). Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51: 404–413, https://doi.org/10.1038/s41588-018-0311-9.Search in Google Scholar PubMed PubMed Central

Jiang, L., Ash, P.E.A., Maziuk, B.F., Ballance, H.I., Boudeau, S., Abdullatif, A.A., Orlando, M., Petrucelli, L., Ikezu, T., and Wolozin, B. (2019). TIA1 regulates the generation and response to toxic tau oligomers. Acta Neuropathol. 137: 259–277, https://doi.org/10.1007/s00401-018-1937-5.Search in Google Scholar PubMed PubMed Central

Jucker, M. and Walker, L.C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501: 45–51, https://doi.org/10.1038/nature12481.Search in Google Scholar PubMed PubMed Central

Karaahmet, B., Le, L., Mendes, M.S., Majewska, A.K., and O’Banion, M.K. (2022). Repopulated microglia induce expression of Cxcl13 with differential changes in Tau phosphorylation but do not impact amyloid pathology. J. Neuroinflammation 19: 173, https://doi.org/10.1186/s12974-022-02532-9.Search in Google Scholar PubMed PubMed Central

Kedersha, N., Cho, M.R., Li, W., Yacono, P.W., Chen, S., Gilks, N., and Anderson, P. (2000). Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J. Cell Biol. 151: 1257–1268, https://doi.org/10.1083/jcb.151.6.1257.Search in Google Scholar PubMed PubMed Central

Kent, S.A., Spires-Jones, T.L., and Durrant, C.S. (2020). The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 140: 417–447, https://doi.org/10.1007/s00401-020-02196-w.Search in Google Scholar PubMed PubMed Central

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T.K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., et al.. (2017). A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169: 1276–1290.e17, https://doi.org/10.1016/j.cell.2017.05.018.Search in Google Scholar PubMed

Kimura, T., Whitcomb, D.J., Jo, J., Regan, P., Piers, T., Heo, S., Brown, C., Hashikawa, T., Murayama, M., Seok, H., et al.. (2014). Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos. Trans. R. Soc., B 369: 20130144, https://doi.org/10.1098/rstb.2013.0144.Search in Google Scholar PubMed PubMed Central

Kitazawa, M., Yamasaki, T.R., and LaFerla, F.M. (2004). Microglia as a potential bridge between the amyloid beta-peptide and tau. Ann. N. Y. Acad. Sci. 1035: 85–103, https://doi.org/10.1196/annals.1332.006.Search in Google Scholar PubMed

Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., DeStafano, A.L., Bis, J.C., Beecham, G.W., Grenier-Boley, B., et al.. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45: 1452–1458, https://doi.org/10.1038/ng.2802.Search in Google Scholar PubMed PubMed Central

Laurent, C., Buee, L., and Blum, D. (2018). Tau and neuroinflammation: what impact for Alzheimer’s disease and tauopathies? Biomed. J. 41: 21–33, https://doi.org/10.1016/j.bj.2018.01.003.Search in Google Scholar PubMed PubMed Central

LeBlang, C.J., Medalla, M., Nicoletti, N.W., Hays, E.C., Zhao, J., Shattuck, J., Cruz, A.L., Wolozin, B., and LuebkeI, J.I. (2020). Reduction of the RNA binding protein TIA1 exacerbates neuroinflammation in tauopathy. Front. Neurosci. 14: 285, https://doi.org/10.3389/fnins.2020.00285.Search in Google Scholar PubMed PubMed Central

Lee, S., Varvel, N.H., Konerth, M.E., Xu, G., Cardona, A.E., Ransohoff, R.M., and Lamb, B.T. (2010). CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am. J. Pathol. 177: 2549–2562. https://doi.org/10.3389/fnins.2020.00285.Search in Google Scholar

Li, Y., Liu, L., Barger, S.W., and Griffin, W.S.T. (2003). Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 23: 1605–1611, https://doi.org/10.1523/jneurosci.23-05-01605.2003.Search in Google Scholar PubMed PubMed Central

Liu-Yesucevitz, L., Bassell, G.J., Gitler, A.D., Hart, A.C., Klann, E., Richter, J.D., Warren, S.T., and Wolozin, B. (2011). Local RNA translation at the synapse and in disease. J. Neurosci. 31: 16086–16093, https://doi.org/10.1523/jneurosci.4105-11.2011.Search in Google Scholar PubMed PubMed Central

Lodder, C., Scheyltjens, I., Stancu, I.C., Botella Lucena, P., Gutiérrez de Ravé, M., Vanherle, S., Vanmierlo, T., Cremers, N., Vanrusselt, H., Brône, B., et al.. (2021). CSF1R inhibition rescues tau pathology and neurodegeneration in an A/T/N model with combined AD pathologies, while preserving plaque associated microglia. Acta Neuropathol. Commun. 9: 108, https://doi.org/10.1186/s40478-021-01204-8.Search in Google Scholar PubMed PubMed Central

Long, J.M. and Holtzman, D.M. (2019). Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179: 312–339, https://doi.org/10.1016/j.cell.2019.09.001.Search in Google Scholar PubMed PubMed Central

Lyons, A., Lynch, A.M., Downer, E.J., Hanley, R., O’Sullivan, J.B., Smith, A., and Lynch, M.A. (2009). Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attentuates microglial activation in vivo and in vitro. J. Neurochem. 110: 1547–1556, https://doi.org/10.1111/j.1471-4159.2009.06253.x.Search in Google Scholar PubMed

Maphis, N., Xu, G., Kokiko-Cochran, O.N., Jiang, S., Cardona, A., Ransohoff, R.M., Lamb, B.T., and Bhaskar, K. (2015). Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 138: 1738–1755, https://doi.org/10.1093/brain/awv081.Search in Google Scholar PubMed PubMed Central

Marciniak, E., Leboucher, A., Caron, E., Ahmed, T., Tailleux, A., Dumont, J., Issad, T., Gerhardt, E., Pagesy, P., Vileno, M., et al.. (2017). Tau deletion promotes brain insulin resistance. J. Exp. Med. 214: 2257–2269, https://doi.org/10.1084/jem.20161731.Search in Google Scholar PubMed PubMed Central

McFarland, K.N. and Chakrabarty, P. (2022). Microglia in Alzheimer’s disease: a key player in the transition between homeostasis and pathogenesis. Neurotherapeutics 19: 186–208, https://doi.org/10.1007/s13311-021-01179-3.Search in Google Scholar PubMed PubMed Central

Meng, J.X., Zhang, Y., Saman, D., Haider, A.M., De, S., Sang, J.C., and Klenerman, D. (2022). Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses. Nat. Commun. 13: 1–16, https://doi.org/10.1038/s41467-022-30461-x.Search in Google Scholar PubMed PubMed Central

Mielke, M.M., Przybelski, S.A., Lesnick, T.G., Kern, S., Zetterberg, H., Blennow, K., Knopman, D.S., Graff-Radford, J., Petersen, R.C., and Jack, C.R.Jr (2021). Comparison of CSF neurofilament light chain, neurogranin, and tau to MRI markers. Alzheimer’s Dementia 17: 801–812, https://doi.org/10.1002/alz.12239.Search in Google Scholar PubMed PubMed Central

Miltenberger-Miltenyi, G., Cruz-Machado, A.R., Saville, J., Conceição, V.A., Calado, Â., Lopes, I., Fuller, M., and Fonseca, J.E. (2020). Increased monohexosylceramide levels in the serum of established rheumatoid arthritis patients. Rheumatology 59: 2085–2089, https://doi.org/10.1093/rheumatology/kez545.Search in Google Scholar PubMed

Miranda, A.M., Lasiecka, Z.M., Xu, Y., Neufeld, J., Shahriar, S., Simoes, S., Chan, R.B., Oliveira, T.G., Small, S.A., and Di Paolo, G. (2018). Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. Nat. Commun. 9: 291, https://doi.org/10.1038/s41467-017-02533-w.Search in Google Scholar PubMed PubMed Central

Myeku, N., Clelland, C.L., Emrani, S., Kukushkin, N.V., Yu, W.H., Goldberg, A.L., and Duff, K.E. (2016). Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 22: 46–53, https://doi.org/10.1038/nm.4011.Search in Google Scholar PubMed PubMed Central

Nash, K.R., Lee, D.C., Hunt, J.B. Jr., Morganti, J.M., Selenica, M.L., Moran, P., Reid, P., Brownlow, M., Guang-Yu Yang, C., Savalia, M., et al.. (2013). Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiol. Aging. 34: 1540–1548.10.1016/j.neurobiolaging.2012.12.011Search in Google Scholar PubMed PubMed Central

Parachikova, A., Agadjanyan, M.G., Cribbs, D.H., Blurton-Jones, M., Perreau, V., Rogers, J., Beach, T.G., and Cotman, C.W. (2007). Inflammatory changes parallel the early stages of Alzheimer disease. Neurobiol. Aging 28: 1821–1833, https://doi.org/10.1016/j.neurobiolaging.2006.08.014.Search in Google Scholar PubMed PubMed Central

Pascoal, T.A., Benedet, A.L., Ashton, N.J., Kang, M.S., Therriault, J., Chamoun, M., Savard, M., Lussier, F.Z., Tissot, C., and Karikari, T.K. (2021). Microglial activation and tau propagate jointly across Braak stages. Nat. Med. 27: 1592–1599, https://doi.org/10.1038/s41591-021-01456-w.Search in Google Scholar PubMed

Perea, J.R., Bolós, M., Cuadros, R., García, E., García-Escudero, V., Hernández, F., and Avila, J. (2022). p38 inhibition decreases Tau toxicity in microglia and improves their phagocytic function. Mol. Neurobiol. 59: 1632–1648, https://doi.org/10.1007/s12035-021-02715-0.Search in Google Scholar PubMed PubMed Central

Pernègre, C., Duquette, A., and Leclerc, N. (2019). Tau secretion: good and bad for neurons. Front. Neurosci. 13: 649, https://doi.org/10.3389/fnins.2019.00649.Search in Google Scholar PubMed PubMed Central

Piedrahita, D., Castro-Alvarez, J.F., Boudreau, R.L., Villegas-Lanau, A., Kosik, K.S., Gallego-Gomez, J.C., and Cardona-Gomez, G.P. (2016). β-secretase 1’s targeting reduces hyperphosphorylated tau, implying autophagy actors in 3xTg-AD mice. Front. Cell. Neurosci. 9: 498, https://doi.org/10.3389/fncel.2015.00498.Search in Google Scholar PubMed PubMed Central

Pilliod, J., Desjardins, A., Pernègre, C., Jamann, H., Larochelle, C., Fon, E.A., and Leclerc, N. (2020). Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. J. Biol. Chem. 295: 17827–17841, https://doi.org/10.1074/jbc.ra120.013553.Search in Google Scholar

Pooler, A.M., Phillips, E.C., Lau, D.H., Noble, W., and Hanger, D.P. (2013). Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 14: 389–394, https://doi.org/10.1038/embor.2013.15.Search in Google Scholar PubMed PubMed Central

Rauch, J.N., Luna, G., Guzman, E., Audouard, M., Challis, C., Sibih, Y.E., Leshuk, C., Hernandez, I., Wegmann, S., Hyman, B.T., et al.. (2020). LRP1 is a master regulator of tau uptake and spread. Nature 580: 381–385, https://doi.org/10.1038/s41586-020-2156-5.Search in Google Scholar PubMed PubMed Central

Rodriguez, L., Mohamed, N.-V., Desjardins, A., Lipp´e, R., Fon, E.A., and Leclerc, N. (2017). Rab7A regulates tau secretion. J. Neurochem. 141: 592–605, https://doi.org/10.1111/jnc.13994.Search in Google Scholar PubMed

Rossi, G., Redaelli, V., Contiero, P., Fabiano, S., Tagliabue, G., Perego, P., Benussi, L., Bruni, A.C., Filippini, G., Farinotti, M., et al.. (2018). Tau mutations serve as a novel risk factor for cancer. Cancer Res. 78: 3731–3739, https://doi.org/10.1158/0008-5472.can-17-3175.Search in Google Scholar PubMed PubMed Central

Saman, S., Kim, W., Raya, M., Visnick, Y., Miro, S., Saman, S., Jackson, B., McKee, A.C., Alvarez, V.E., Lee, N.C.Y., et al.. (2012). Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287: 3842–3849, https://doi.org/10.1074/jbc.m111.277061.Search in Google Scholar PubMed PubMed Central

Sánchez-Valle, J., Tejero, H., Ibáñez, K., Portero, J.L., Krallinger, M., Al-Shahrour, F., and Valencia, A. (2017). A molecular hypothesis to explain direct and inverse co-morbidities between Alzheimer’s disease, glioblastoma and lung cancer. Sci. Rep. 7: 1–12.10.1038/s41598-017-04400-6Search in Google Scholar PubMed PubMed Central

Serrano, J., Fernandez, A.P., Martinez-Murillo, R., and Martinez, A. (2010). High sensitivity to carcinogens in the brain of a mouse model of Alzheimer’s disease. Oncogene 29: 2165–2171, https://doi.org/10.1038/onc.2009.503.Search in Google Scholar PubMed

Serrano-Pozo, A., Mielke, M.L., Gómez-Isla, T., Betensky, R.A., Growdon, J.H., Frosch, M.P., and Hyman, B.T. (2011). Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am. J. Pathol. 179: 1373–1384, https://doi.org/10.1016/j.ajpath.2011.05.047.Search in Google Scholar PubMed PubMed Central

Shi, Y., Manis, M., Long, J., Wang, K., Sullivan, P.M., Remolina Serrano, J., Hoyle, R., and Holtzman, D.M. (2019). Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J. Exp. Med. 216: 2546–2561, https://doi.org/10.1084/jem.20190980.Search in Google Scholar PubMed PubMed Central

Showalter, M.R., Berg, A.L., Nagourney, A., Heil, H., Carraway, K.L.3rd, and Fiehn, O. (2020). The emerging and diverse roles of bis(monoacylglycerol) phosphate lipids in cellular physiology and disease. Int. J. Mol. Sci. 21: 8067, https://doi.org/10.3390/ijms21218067.Search in Google Scholar PubMed PubMed Central

Sidoryk-Węgrzynowicz, M. and Strużyńska, L. (2019). Astroglial contribution to tau-dependent neurodegeneration. Biochem. J. 476: 3493–3504, https://doi.org/10.1042/BCJ20190506.Search in Google Scholar PubMed

Simón, D., García-García, E., Royo, F., Falcón-Pérez, J.M., and Avila, J. (2012). Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles. FEBS (Fed. Eur. Biochem. Soc.) Lett. 586: 47–54.10.1016/j.febslet.2011.11.022Search in Google Scholar PubMed

Smolek, T., Jadhav, S., Brezovakova, V., Cubinkova, V., Valachova, B., Novak, P., and Zilka, N. (2019). First-in-rat study of human Alzheimer’s disease tau propagation. Mol. Neurobiol. 56: 621–631, https://doi.org/10.1007/s12035-018-1102-0.Search in Google Scholar PubMed

Song, L., Wells, E.A., and Robinson, A.S. (2021). Critical molecular and cellular contributors to tau pathology. Biomedicines 9: 190, https://doi.org/10.3390/biomedicines9020190.Search in Google Scholar PubMed PubMed Central

Stancu, I.-C., Cremers, N., Vanrusselt, H., Couturier, J., Vanoosthuyse, A., Kessels, S., Lodder, C., Brône, B., Huaux, F., Octave, J.-N., et al.. (2019). Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol. 137: 599–617, https://doi.org/10.1007/s00401-018-01957-y.Search in Google Scholar PubMed PubMed Central

Su, H., Rustam, Y.H., Masters, C.L., Makalic, E., McLean, C.A., Hill, A.F., Barnham, K.J., Reid, G.E., and Vella, L.J. (2021). Characterization of brain-derived extracellular vesicle lipids in Alzheimer’s disease. J. Extracell. Vesicles 10: e12089, https://doi.org/10.1002/jev2.12089.Search in Google Scholar PubMed PubMed Central

Swanson, M.E., Scotter, E.L., Smyth, L.C., Murray, H.C., Ryan, B., Turner, C., Faull, R.L.M., Dragunow, M., and Curtis, M.A. (2020). Identification of a dysfunctional microglial population in human Alzheimer’s disease cortex using novel single-cell histology image analysis. Acta Neuropathol. Commun. 8: 1–16, https://doi.org/10.1186/s40478-020-01047-9.Search in Google Scholar PubMed PubMed Central

Tak, H., Eun, J.W., Kim, J., Park, S.J., Kim, C., Ji, E., Lee, H., Kang, H., Cho, D.-H., Lee, K., et al.. (2017). T-cell-restricted intracellular antigen 1 facilitates mitochondrial fragmentation by enhancing the expression of mitochondrial fission factor. Cell Death Differ. 24: 49–58, https://doi.org/10.1038/cdd.2016.90.Search in Google Scholar PubMed PubMed Central

Talbot, K., Wang, H.Y., Kazi, H., Han, L.Y., Bakshi, K.P., Stucky, A., Fuino, R.L., Kawaguchi, K.R., Samoyedny, A.J., Wilson, R.S., et al.. (2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122: 1316–1338, https://doi.org/10.1172/jci59903.Search in Google Scholar

Tardivel, M., Bégard, S., Bousset, L., Dujardin, S., Coens, A., Melki, R., Buée, L., and Colin, M. (2016). Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol. Commun. 4: 117, https://doi.org/10.1186/s40478-016-0386-4.Search in Google Scholar PubMed PubMed Central

Therriault, J., Benedet, A.L., Pascoal, T.A., Mathotaarachchi, S., Savard, M., Chamoun, M., Thomas, E., Kang, M.S., Lussier, F., Tissot, C., et al.. (2021). APOEε4 potentiates the relationship between amyloid-β and tau pathologies. Mol. Psychiatr. 26: 5977–5988, https://doi.org/10.1038/s41380-020-0688-6.Search in Google Scholar PubMed PubMed Central

Tracy, T.E., Madero-Pérez, J., Swaney, D.L., Chang, T.S., Moritz, M., Konrad, C., Ward, M.E., Stevenson, E., Hüttenhain, R., and Kauwe, G. (2022). Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell 185: 712–728, https://doi.org/10.1016/j.cell.2021.12.041.Search in Google Scholar PubMed PubMed Central

Vanderweyde, T., Apicco, D.J., Youmans-Kidder, K., Ash, P.E., Cook, C., da Rocha, E.L., Jansen-West, K., Frame, A.A., Citro, A., Leszyk, J.D., et al.. (2016). Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 15: 1455–1466, https://doi.org/10.1016/j.celrep.2016.04.045.Search in Google Scholar PubMed PubMed Central

Vaz-Silva, J., Gomes, P., Jin, Q., Zhu, M., Zhuravleva, V., Quintremil, S., Meira, T., Silva, J., Dioli, C., Soares-Cunha, C., et al.. (2018). Endolysosomal degradation of Tau and its role in glucocorticoid-driven hippocampal malfunction. EMBO J. 37: e99084, https://doi.org/10.15252/embj.201899084.Search in Google Scholar PubMed PubMed Central

Venegas, C., Kumar, S., Franklin, B.S., Dierkes, T., Brinkschulte, R., Tejera, D., Vieira-Saecker, A., Schwartz, S., Santarelli, F., Kummer, M.P., et al.. (2017). Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552: 355–361, https://doi.org/10.1038/nature25158.Search in Google Scholar PubMed

Venkatramani, A. and Panda, D. (2019). Regulation of neuronal microtubule dynamics by tau: implications for tauopathies. Int. J. Biol. Macromol. 133: 473–483, https://doi.org/10.1016/j.ijbiomac.2019.04.120.Search in Google Scholar PubMed

Wang, Y. and Mandelkow, E. (2016). Tau in physiology and pathology. Nat. Rev. Neurosci. 17: 22–35, https://doi.org/10.1038/nrn.2015.1.Search in Google Scholar PubMed

Wang, S., Mustafa, M., Yuede, C.M., Salazar, S.V., Kong, P., Long, H., Ward, M., Siddiqui, O., Paul, R., Gilfillan, S., et al.. (2020). Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J. Exp. Med. 217: e20200785, https://doi.org/10.1084/jem.20200785.Search in Google Scholar PubMed PubMed Central

Wang, C., Fan, L., Khawaja, R.R., Liu, B., Zhan, L., Kodama, L., Chin, M., Li, Y., Le, D., Zhou, Y., et al.. (2022). Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat. Commun. 13: 1–19, https://doi.org/10.1038/s41467-022-29552-6.Search in Google Scholar PubMed PubMed Central

Watanabe, Y., Taguchi, K., and Tanaka, M. (2020). Ubiquitin, autophagy and neurodegenerative diseases. Cells 9: 2022, https://doi.org/10.3390/cells9092022.Search in Google Scholar PubMed PubMed Central

Wright, R. (2021). Microglia set the pace for tau spread. Nat. Neurosci. 24: 1342, https://doi.org/10.1038/s41593-021-00931-4.Search in Google Scholar PubMed

Xia, Y., Prokop, S., Gorion, K.-M.M., Kim, J.D., Sorrentino, Z.A., Bell, B.M., Manaois, A.N., Chakrabarty, P., Davies, P., and Giasson, B.I. (2020). Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimer’s disease and other tauopathies. Acta Neuropathol. Commun. 8: 1–17, https://doi.org/10.1186/s40478-020-00967-w.Search in Google Scholar PubMed PubMed Central

Xu, Y., Cui, L., Dibello, A., Wang, L., Lee, J., Saidi, L., Lee, J.-G., and Ye, Y. (2018). DNAJC5 facilitates USP19-dependent unconventional secretion of misfolded cytosolic proteins. Cell Discovery 4: 11, https://doi.org/10.1038/s41421-018-0012-7.Search in Google Scholar PubMed PubMed Central

Xu, Y., Propson, N.E., Du, S., Xiong, W., and Zheng, H. (2021). Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proc. Natl. Acad. Sci. U. S. A. 118: e2023418118.10.1073/pnas.2023418118Search in Google Scholar PubMed PubMed Central

Yamazaki, Y., Zhao, N., Caulfield, T.R., Liu, C.C., and Bu, G. (2019). Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 15: 501–518.10.1038/s41582-019-0228-7Search in Google Scholar PubMed PubMed Central

Yang, L., Liu, C.-C., Zheng, H., Kanekiyo, T., Atagi, Y., Jia, L., Wang, D., N’songo, A., Can, D., Xu, H., et al.. (2016). LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways. J. Neuroinflammation 13: 304, https://doi.org/10.1186/s12974-016-0772-7.Search in Google Scholar PubMed PubMed Central

Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S.-M., Iwata, N., Saido, T.C., Maeda, J., Suhara, T., Trojanowski, J.Q., and Lee, V.M.-Y. (2007). Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53: 337–351, https://doi.org/10.1016/j.neuron.2007.01.010.Search in Google Scholar PubMed

Yuan, P., Condello, C., Keene, C.D., Wang, Y., Bird, T.D., Paul, S.M., Luo, W., Colonna, M., Baddeley, D., and Grutzendler, J. (2016). TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90: 724–739, https://doi.org/10.1016/j.neuron.2016.05.003.Search in Google Scholar PubMed PubMed Central

Zempel, H., Luedtke, J., Kumar, Y., Biernat, J., Dawson, H., Mandelkow, E., and Mandelkow, E.M. (2013). Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J. 32: 2920–2937, https://doi.org/10.1038/emboj.2013.207.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O’Keeffe, S., Phatnani, H.P., Guarnieri, P., Caneda, C., Ruderisch, N., et al.. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34: 11929–11947, https://doi.org/10.1523/jneurosci.1860-14.2014.Search in Google Scholar

Zhang, Y., Sloan, S.A., Clarke, L.E., Caneda, C., Plaza, C.A., Blumenthal, P.D., Vogel, H., Steinberg, G.K., Edwards, M.S.B., Li, G., et al.. (2016). Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89: 37–53, https://doi.org/10.1016/j.neuron.2015.11.013.Search in Google Scholar PubMed PubMed Central

Zhang, W., Falcon, B., Murzin, A.G., Fan, J., Crowther, R.A., Goedert, M., and Scheres, S.H. (2019). Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. Elife 8: e43584, https://doi.org/10.7554/eLife.43584.Search in Google Scholar PubMed PubMed Central

Zujovic, V., Benavides, J., Vigé, X., Carter, C., and Taupin, V. (2000). Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29: 305–315, https://doi.org/10.1002/(sici)1098-1136(20000215)29:4<305::aid-glia2>3.0.co;2-v.10.1002/(SICI)1098-1136(20000215)29:4<305::AID-GLIA2>3.0.CO;2-VSearch in Google Scholar

Zwierzchowski-Zarate, A.N., Mendoza-Oliva, A., Kashmer, O.M., Collazo-Lopez, J.E., White, C.L., and Diamond, M.I. (2022). RNA induces unique tau strains and stabilizes Alzheimer’s disease seeds. J. Biol. Chem. 298: 102132, https://doi.org/10.1016/j.jbc.2022.102132.Search in Google Scholar

Received: 2022-07-20
Accepted: 2022-09-07
Published Online: 2022-10-28
Published in Print: 2023-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2022-0087/html
Scroll to top button