Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 27, 2022

Existence and Hyers–Ulam stability of solutions for nonlinear three fractional sequential differential equations with nonlocal boundary conditions

  • Muthaiah Subramanian ORCID logo , Murugesan Manigandan , Akbar Zada ORCID logo EMAIL logo and Thangaraj Nandha Gopal

Abstract

In this paper, we analyses the existence and Hyers–Ulam stability of a coupled system of three sequential fractional differential equations with coupled integral boundary conditions. This manuscript can be categorized into three parts: The Leray–Schauder alternative is used to prove the existence of a solution in the first section. The second section emphasizes the analysis of uniqueness, which is based on the Banach fixed point theorem’s concept of contraction mapping, and the third section establishes the Hyers–Ulam stability results. In addition, we provide examples to demonstrate our findings.

2010 MSC: 34A08; 34B15; 45G15

Corresponding author: Akbar Zada, Department of Mathematics, University of Peshawar, Peshawar, Pakistan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] S. Etemad, S. K. Ntouyas, and J. Tariboon, “Existence results for three-point boundary value problems for nonlinear fractional differential equations,” J. Nonlinear Sci. Appl., vol. 9, no. 5, pp. 2105–2116, 2016. https://doi.org/10.22436/jnsa.009.05.16.Search in Google Scholar

[2] X. Su, “Boundary value problem for a coupled system of nonlinear fractional differential equations,” Appl. Math. Lett., vol. 22, no. 1, pp. 64–69, 2009. https://doi.org/10.1016/j.aml.2008.03.001.Search in Google Scholar

[3] B. Ahmad, “Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations,” Appl. Math. Lett., vol. 23, no. 4, pp. 390–394, 2010. https://doi.org/10.1016/j.aml.2009.11.004.Search in Google Scholar

[4] D. Baleanu, S. Rezapour, and H. Mohammadi, “Some existence results on nonlinear fractional differential equations,” Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci., vol. 371, 1990, p. 20120144, 2013. https://doi.org/10.1098/rsta.2012.0144.Search in Google Scholar PubMed

[5] R. Gorenflo and F. Mainardi, “Fractional calculus,” in Fractals and Fractional Calculus in Continuum Mechanics, New York, Springer, 1997, pp. 223–276.10.1007/978-3-7091-2664-6_5Search in Google Scholar

[6] S. Das, Functional Fractional Calculus, Berlin, Springer, Science and Business Media, 2011.10.1007/978-3-642-20545-3Search in Google Scholar

[7] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Singapore, World Scientific, 2010.10.1142/p614Search in Google Scholar

[8] R. Hilfer, Ed., Applications of Fractional Calculus in Physics, Singapore, World Scientific, 2000.10.1142/3779Search in Google Scholar

[9] R. L. Magin, “Fractional calculus in bioengineering, part 3,” Crit. Rev. Biomed. Eng., vol. 32, nos. 3 and 4, pp. 1–183, 2004. https://doi.org/10.1615/critrevbiomedeng.v32.i34.10.Search in Google Scholar PubMed

[10] L. Debnath, “A brief historical introduction to fractional calculus,” Int. J. Math. Educ. Sci. Technol., vol. 35, no. 4, pp. 487–501, 2004. https://doi.org/10.1080/00207390410001686571.Search in Google Scholar

[11] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, New York, Elsevier, 1998.Search in Google Scholar

[12] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, London, Elsevier, 2006.Search in Google Scholar

[13] D. R. Smart, Fixed Point Theorems, vol. 66, London, Cambridge University Press, 1980.Search in Google Scholar

[14] S. Muthaiah, D. Baleanu, and N. G. Thangaraj, “Existence and Hyers–Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations,” AIMS Math., vol. 6, no. 1, pp. 168–194, 2021. https://doi.org/10.3934/math.2021012.Search in Google Scholar

[15] S. Muthaiah, M. Murugesan, and N. G. Thangaraj, “Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations,” Adv. Theory Nonlinear Anal. Appl., vol. 3, no. 3, pp. 162–173, 2019. https://doi.org/10.31197/atnaa.579701.Search in Google Scholar

[16] M. Cui, Y. Zhu, and H. Pang, “Existence and uniqueness results for a coupled fractional order systems with the multi-strip and multi-point mixed boundary conditions,” Adv. Differ. Equ., vol. 2017, no. 1, pp. 1–23, 2017. https://doi.org/10.1186/s13662-017-1287-y.Search in Google Scholar

[17] M. Alam, A. Zada, I. L. Popa, A. Kheiryan, S. Rezapour, and M. K. Kaabar, “A fractional differential equation with multi-point strip boundary condition involving the Caputo fractional derivative and its Hyers–Ulam stability,” Bound. Value Probl., vol. 2021, no. 1, pp. 1–18, 2021. https://doi.org/10.1186/s13661-021-01549-y.Search in Google Scholar

[18] J. Wang, K. Shah, and A. Ali, “Existence and Hyers–Ulam stability of fractional nonlinear impulsive switched coupled evolution equations,” Math. Methods Appl. Sci., vol. 41, no. 6, pp. 2392–2402, 2018. https://doi.org/10.1002/mma.4748.Search in Google Scholar

[19] S. K. Ntouyas and M. Obaid, “A coupled system of fractional differential equations with nonlocal integral boundary conditions,” Adv. Differ. Equ., vol. 2012, no. 1, pp. 1–8, 2012. https://doi.org/10.1186/1687-1847-2012-130.Search in Google Scholar

[20] Z. Dahmani and A. Taıeb, “A coupled system of fractional differential equations involving two fractional orders,” ROMAI J., vol. 11, no. 2, pp. 141–177, 2015.Search in Google Scholar

[21] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York, Wiley, 1993.Search in Google Scholar

[22] B. Ahmad, S. K. Ntouyas, and A. Alsaedi, “Sequential fractional differential equations and inclusions with semi-periodic and nonlocal integro-multipoint boundary conditions,” J. King Saud Univ. Sci., vol. 31, no. 2, pp. 184–193, 2019. https://doi.org/10.1016/j.jksus.2017.09.020.Search in Google Scholar

[23] A. Zada, M. Yar, and T. Li, “Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions,” Ann. Univ. Paedagog. Cracoviensis. Stud. Math., vol. 17, no. 1, pp. 103–125, 2018. https://doi.org/10.2478/aupcsm-2018-0009.Search in Google Scholar

[24] S. Etemad, M. M. Matar, M. A. Ragusa, and S. Rezapour, “Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness,” Mathematics, vol. 10, no. 1, p. 25, 2022. https://doi.org/10.3390/math10010025.Search in Google Scholar

[25] M. Subramanian, M. Manigandan, C. Tunç, T. N. Gopal, and J. Alzabut, “On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order,” J. Taibah Univ. Sci., vol. 16, no. 1, pp. 1–23, 2022. https://doi.org/10.1080/16583655.2021.2010984.Search in Google Scholar

[26] M. Manigandan, S. Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, and N. Gunasekaran, “Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order,” AIMS Math., vol. 7, no. 1, pp. 723–755, 2022. https://doi.org/10.3934/math.2022045.Search in Google Scholar

[27] S. M. Ulam, A Collection of Mathematical Problems (No. 8), New York, Interscience Publishers, 1960.Search in Google Scholar

[28] D. H. Hyers, “On the stability of the linear functional equation,” Proc. Natl. Acad. Sci., vol. 27, no. 4, p. 222, 1941. https://doi.org/10.1073/pnas.27.4.222.Search in Google Scholar PubMed PubMed Central

[29] A. B. Makhlouf, “Stability with respect to part of the variables of nonlinear Caputo fractional differential equations,” Math. Commun., vol. 23, pp. 119–126, 2018.Search in Google Scholar

[30] H. Arfaoui and A. B. Makhlouf, “Stability of a time fractional advection-diffusion system,” Chaos, Solit. Fractals, vol. 157, p. 111949, 2022. https://doi.org/10.1016/j.chaos.2022.111949.Search in Google Scholar

[31] A. B. Makhlouf and D. Baleanu, “Finite time stability of fractional order systems of neutral type,” Fractal Fract., vol. 6, p. 289, 2022. https://doi.org/10.3390/fractalfract6060289.Search in Google Scholar

[32] A. B. Makhlouf, “Partial practical stability for fractional-order nonlinear systems,” Math. Methods Appl. Sci., vol. 45, pp. 5135–5148, 2022. https://doi.org/10.1002/mma.8097.Search in Google Scholar

[33] M. M. Matar, I. A. Amra, and J. Alzabut, “Existence of solutions for tripled system of fractional differential equations involving cyclic permutation boundary conditions,” Bound. Value Probl., vol. 2020, no. 1, pp. 1–13, 2020. https://doi.org/10.1186/s13661-020-01437-x.Search in Google Scholar

[34] B. Ahmad, S. Hamdan, A. Alsaedi, and S. K. Ntouyas, “A study of a nonlinear coupled system of three fractional differential equations with nonlocal coupled boundary conditions,” Adv. Differ. Equ., vol. 2021, no. 1, pp. 1–21, 2021. https://doi.org/10.1186/s13662-021-03440-7.Search in Google Scholar

[35] A. Nouara, A. Amara, E. Kaslik, S. Etemad, S. Rezapour, F. Martinez, and M. K. A. Kaabar, “A study on multiterm hybrid multi-order fractional boundary value problem coupled with its stability analysis of Ulam–Hyers type,” Adv. Differ. Equ., vol. 2021, no. 1, pp. 1–28, 2021. https://doi.org/10.1186/s13662-021-03502-w.Search in Google Scholar

[36] M. K. A. Kaabar, V. Kalvandi, N. Eghbali, M. E. Samei, Z. Siri, and F. Martínez, “A generalized ML-Hyers-Ulam Stability of quadratic fractional integral equation,” Nonlinear Eng., vol. 10, no. 1, pp. 414–427, 2021. https://doi.org/10.1515/nleng-2021-0033.Search in Google Scholar

[37] M. Houas, F. Martínez, M. E. Samei, and M. K. A. Kaabar, “Uniqueness and Ulam–Hyers–Rassias stability results for sequential fractional pantograph q-differential equations,” J. Inequalities Appl., vol. 2022, no. 1, pp. 1–24, 2022. https://doi.org/10.1186/s13660-022-02828-7.Search in Google Scholar

[38] M. K. A. Kaabar, A. Refice, M. S. Souid, F. Martínez, S. Etemad, Z. Siri, and S. Rezapour, “Existence and UHR stability of solutions to the implicit nonlinear FBVP in the variable order settings,” Mathematics, vol. 9, no. 14, p. 1693, 2021. https://doi.org/10.3390/math9141693.Search in Google Scholar

[39] M. Abu-Shady and M. K. Kaabar, “A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady–Kaabar fractional derivative,” Comput. Math. Methods Med., vol. 2022, 2022, Art no. 2138775. https://doi.org/10.1155/2022/2138775.Search in Google Scholar PubMed PubMed Central

[40] M. Abu-Shady and M. K. Kaabar, “A generalized definition of the fractional derivative with applications,” Math. Probl. Eng., vol. 2021, 2021, Art no. 9444803. https://doi.org/10.1155/2021/9444803.Search in Google Scholar

Received: 2022-04-12
Accepted: 2022-09-29
Published Online: 2022-10-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.5.2024 from https://www.degruyter.com/document/doi/10.1515/ijnsns-2022-0152/html
Scroll to top button