Skip to main content
Log in

A homogalacturonan from Lonicera japonica Thunb. disrupts angiogenesis via epidermal growth factor receptor and Delta-like 4 associated signaling

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A homogeneous polysaccharide named as LJW2F2 was extracted and purified from the flowers of Lonicera japonica Thunb. Structural characteristic indicated that LJW2F2 was a homogalacturonan composed of α-1,4-D-galacturonic acid with a molecular weight of 7.2 kDa. Previous investigation suggested that homogalacturonan might impede angiogenesis, however the mechanism is still vague. Here we reported that LJW2F2 significantly disrupted capillary-like tube formation of human microvascular endothelia cells (HMEC-1) on matrigel as well as the cells migration. Mechanism study revealed that LJW2F2 might inactivate phosphorylation of epidermal growth factor receptor (EGFR), subsequently suppress Raf, mitogen-activated protein kinase (MEK) and extracellular-related kinase (ERK) phosphorylation. Moreover, LJW2F2 markedly decreased the expression of Notch1 and Delta-like ligand 4 (Dll4). Therefore, our results suggested that LJW2F2 might be a potential angiogenesis inhibitor via disturbing multiple signaling pathways.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed involved in this study are included in the present manuscript.

Abbreviations

HMEC-1:

human microvascular endothelial cells

DMSO:

dimethyl sulfoxide

GC:

gas chromatography

HPGPC:

high performance gel permeation chromatography

NMR:

nuclear magnetic resonance

cDNA:

complementary DNA

EGF:

epidermal growth factor

HRP:

horseradish peroxidase

RT-PCR:

reverse transcription-PCR

ERK:

extracellular signal-regulated kinase

VEGF:

vascular endothelial growth factor

Dll4:

Delta-like 4

References

  1. Yu, Y., Shen, M., Song, Q., Xie, J.: Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 183, 91–101 (2018). https://doi.org/10.1016/j.carbpol.2017.12.009

    Article  CAS  Google Scholar 

  2. Li, D., Li, J., Dong, H., Li, X., Zhang, J., Ramaswamy, S., Xu, F.: Pectin in biomedical and drug delivery applications: A review. Int. J. Biol. Macromol. 185, 49–65 (2021). https://doi.org/10.1016/j.ijbiomac.2021.06.088

    Article  CAS  Google Scholar 

  3. Moslemi, M.: Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydr. Polym. 254, 117324 (2021). https://doi.org/10.1016/j.carbpol.2020.117324

    Article  CAS  Google Scholar 

  4. Wang, H., Wei, G., Liu, F., Banerjee, G., Joshi, M., Bligh, S., Shi, S., Lian, H., Fan, H., Gu, X., Wang, S.: Characterization of two homogalacturonan pectins with immunomodulatory activity from green tea. Int. J. Mol. Sci. 15(6), 9963–9978 (2014). https://doi.org/10.3390/ijms15069963

    Article  CAS  Google Scholar 

  5. Ning, X., Liu, Y., Jia, M., Wang, Q., Sun, Z., Ji, L., Mayo, K., Zhou, Y., Sun, L.: Pectic polysaccharides from Radix Sophorae Tonkinensis exhibit significant antioxidant effects. Carbohydr. Polym. 262, 117925 (2021). https://doi.org/10.1016/j.carbpol.2021.117925

    Article  CAS  Google Scholar 

  6. Zhao, Y., Bi, J., Yi, J., Wu, X., Ma, Y., Li, R.: Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation. Carbohydr. Polym. 269, 118326 (2021). https://doi.org/10.1016/j.carbpol.2021.118326

    Article  CAS  Google Scholar 

  7. Maxwell, E., Colquhoun, I., Chau, H., Hotchkiss, A., Waldron, K., Morris, V., Belshaw, N.: Rhamnogalacturonan I containing homogalacturonan inhibits colon cancer cell proliferation by decreasing ICAM1 expression. Carbohydr. Polym. 132, 546–553 (2015). https://doi.org/10.1016/j.carbpol.2015.06.082

    Article  CAS  Google Scholar 

  8. Wang, H., Bi, H., Gao, T., Zhao, B., Ni, W., Liu, J.: A homogalacturonan from Hippophae rhamnoides L. Berries enhance immunomodulatory activity through TLR4/MyD88 pathway mediated activation of macrophages. Int. J. Biol. Macromol. 107, 1039–1045 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.083

    Article  CAS  Google Scholar 

  9. Wu, J., Xu, Y., Su, J., Zhu, B., Wang, S., Liu, K., Wang, H., Shi, S., Zhang, Q., Qin, L., Wang, S.: Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity. Carbohydr. Polym. 248, 116780 (2020). https://doi.org/10.1016/j.carbpol.2020.116780

    Article  CAS  Google Scholar 

  10. Moriya, J., Minamino, T., Angiogenesis, Cancer, Aging, V.: Front. Cardiovasc. Med. 4, 65 (2017). https://doi.org/10.3389/fcvm.2017.00065

    Article  CAS  Google Scholar 

  11. Sabra, M., Karbasiafshar, C., Aboulgheit, A., Raj, S., Abid, M., Sellke, F.: Clinical application of novel therapies for coronary angiogenesis: Overview, challenges, and prospects. Int. J. Mol. Sci. 22, 3722 (2021). https://doi.org/10.3390/ijms22073722

    Article  CAS  Google Scholar 

  12. Falco, S.: Antiangiogenesis therapy: an update after the first decade. Korean J. Intern. Med. 29, 1–11 (2014). https://doi.org/10.3904/kjim.2014.29.1.1

    Article  CAS  Google Scholar 

  13. Folkman, J.: Tumor angiogenesis: therapeutic implications. N Engl. J. Med. 285, 1182–1186 (1971). https://doi.org/10.1056/NEJM197111182852108

    Article  CAS  Google Scholar 

  14. Fallah, A., Sadeghinia, A., Kahroba, H., Samadi, A., Heidari, H., Bradaran, B., Zeinali, S., Molavi, O.: Therpeutic targeting of angiogenesis molecular pathways in angiogenesis dependent diseases. Biomed. Pharmacother. 110, 775–785 (2019). https://doi.org/10.1016/j.biopha.2018.12.022

    Article  CAS  Google Scholar 

  15. Rajabi, M., Mousa, S.: The role of angiogenesis in cancer treatment. Biomedicines. 5, 34 (2017). https://doi.org/10.3390/biomedicines5020034

    Article  CAS  Google Scholar 

  16. Zhou, J., Ji, Q., Li, Q.: Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res. 40, 328 (2021). https://doi.org/10.1186/s13046-021-02130-2

    Article  CAS  Google Scholar 

  17. Santos, E., Nogueira, K., Fernandes, L., Martins, J., Reis, A., Neto, J., Junior, I., Pessoa, C., Petrilli, R., Eloy, J.: EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. Int. J. Pharm. 592, 120082 (2021). https://doi.org/10.1016/j.ijpharm.2020.120082

    Article  CAS  Google Scholar 

  18. Xie, Y., Chen, Y., Fang, J.: Comprehensive review of targeted therapy for colorectal cancer. Signal. Transduct. Target. Ther. 5, 22 (2020). https://doi.org/10.1038/s41392-020-0116-z

    Article  CAS  Google Scholar 

  19. Liu, F., Wang, J., Chang, A., Liu, B., Yang, L., Li, Q., Wang, P., Zou, X.: Fucoidan extract derived from Undaria pinnatifida inhibits angiogenesis by human umbilical vein endothelial cells. Phytomedicine. 19, 797–803 (2012). https://doi.org/10.1016/j.phymed.2012.03.015

    Article  CAS  Google Scholar 

  20. Tang, Q., Jin, H., Tong, M., Zheng, G., Xie, Z., Tang, S., Jin, J., Shang, P., Xu, H., Shen, L., Zhang, Y., Liu, H.: Inhibition of Dll4/Notch1 pathway promotes angiogenesis of Masquelet’s induced membrane in rats. Exp. Mol. Med. 50, 1–15 (2018). https://doi.org/10.1038/s12276-018-0062-9

    Article  CAS  Google Scholar 

  21. Asnaghi, L., Lin, M., Lim, K., Lim, K., Tripathy, A., Wendeborn, M., Merbs, S., Handa, J., Sodhi, A., Bar, E., Eberhart, C.: Hypoxia promotes uveal melanoma invasion through enhanced Notch and MAPK activation. PLoS. One. 9, e105372 (2014). https://doi.org/10.1371/journal.pone.0105372

    Article  Google Scholar 

  22. Dai, J., Ma, D., Zang, S., Guo, D., Qu, X., Ye, J., Ji, C.: Cross-talk between Notch and EGFR signaling in human breast cancer cells. Cancer Invest. 27, 533–540 (2009). https://doi.org/10.1080/07357900802563036

    Article  CAS  Google Scholar 

  23. Wang, W., Zhao, Z., Ma, S., Yu, G., Liu, B., Zhang, L., Zhang, W., Kulkarni, A., Sun, Z., Zhao, Y.: Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1alpha and Notch1 in head neck squamous cell carcinoma. PloS. One. 10, e0119723 (2015). https://doi.org/10.1371/journal.pone.0119723

    Article  CAS  Google Scholar 

  24. Tian, J., Liu, X., Liu, X., Jing, P., Sa, N., Wang, H., Xu, W.: Notch1 serves as a prognostic factor and regulates metastasis via regulating EGFR expression in hypopharyngeal squamous cell carcinoma. Onco. Targets. Ther. 11, 7395–7405 (2018). https://doi.org/10.2147/OTT.S175423

    Article  CAS  Google Scholar 

  25. Tian, J., Che, H., Ha, D., Wei, Y., Zheng, S.: Characterization and anti-allergic effect of a polysaccharide from the flower buds of Lonicera japonica. Carbohydr. Polym. 90, 1642–1647 (2012). https://doi.org/10.1016/j.carbpol.2012.07.044

    Article  CAS  Google Scholar 

  26. Zhang, T., Liu, H., Bai, X., Liu, P., Yang, Y., Huang, J., Zhou, L., Min, X.: Fractionation and antioxidant activities of the water-soluble polysaccharides from Lonicera japonica Thunb. Int. J. Biol. Macromol. 151, 1058–1066 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.147

    Article  CAS  Google Scholar 

  27. Su, D., Li, S., Zhang, W., Wang, J., Wang, J., Lv, M.: Structural elucidation of a polysaccharide from Lonicera japonica flowers, and its neuroprotective effect on cerebral ischemia-reperfusion injury in rat. Int. J. Biol. Macromol. 99, 350–357 (2017). https://doi.org/10.1016/j.ijbiomac.2017.02.096

    Article  CAS  Google Scholar 

  28. Zhou, X., Dong, Q., Kan, X., Peng, L.H., Xu, X.Y., Fang, Y., Yang, J.L.: Immunomodulatory activity of a novel polysaccharide from Lonicera japonica in immunosuppressed mice induced by cyclophosphamide. PLoS. One. 13, e0204152 (2018). https://doi.org/10.1371/journal.pone.0204152

    Article  CAS  Google Scholar 

  29. Yang, Q., Wang, Q., Deng, W., Sun, C., Wei, Q., Adu-Frimpong, M., Shi, J., Yu, J., Xu, X.: Anti-hyperuricemic and anti-gouty arthritis activities of polysaccharide purified from Lonicera japonica in model rats. Int. J. Biol. Macromol. 123, 801–809 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.077

    Article  CAS  Google Scholar 

  30. Liu, P., Bai, X., Zhang, T., Zhou, L., Li, J., Zhang, L.: The protective effect of Lonicera japonica polysaccharide on mice with depression by inhibiting NLRP3 inflammasome. Ann. Transl Med. 7, 811 (2019). https://doi.org/10.21037/atm.2019.12.64

    Article  CAS  Google Scholar 

  31. Zhou, L., Zhang, T., Lu, B., Yu, Z., Mei, X., Abulizi, P., Ji, L.: Lonicerae Japonicae Flos attenuates diabetic retinopathy by inhibiting retinal angiogenesis. J. Ethnopharmacol. 189, 117–125 (2016). https://doi.org/10.1016/j.jep.2016.05.039

    Article  CAS  Google Scholar 

  32. Dubois, M., Gilles, K., Hamilton, J., Rebers, P., Smith, F.: Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 28, 350–356 (1956). https://doi.org/10.1021/AC60111A017

    Article  CAS  Google Scholar 

  33. Lowry, O., Rosebrough, N., Farr, A., Randall, R.: Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 193, 265–275 (1951). https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  Google Scholar 

  34. Blumenkrantz, N., Asboe-Hansen, G.: New method for quantitative determination of uronic acids. Anal. Biochem. 54, 484–489 (1973). https://doi.org/10.1016/0003-2697(73)90377-1

    Article  CAS  Google Scholar 

  35. Chen, X., Cao, D., Zhou, L., Jin, H., Dong, Q., Yao, J., Ding, K.: Structure of a polysaccharide from Gastrodia elata Bl., and oligosaccharides prepared thereof with anti-pancreatic cancer cell growth activities. Carbohydr. Polym. 86, 1300–1305 (2011). https://doi.org/10.1016/j.carbpol.2011.06.029

    Article  CAS  Google Scholar 

  36. Wang, P., Liao, W., Fang, J., Liu, Q., Yao, J., Hu, M., Ding, K.: A glucan isolated from flowers of Lonicera japonica Thunb. inhibits aggregation and neurotoxicity of Aβ42. Carbohydr. Polym. 110, 142–147 (2014). https://doi.org/10.1016/j.carbpol.2014.03.060

    Article  CAS  Google Scholar 

  37. Leclere, L., Cutsem, P., Michiels, C.: Anti-cancer activities of pH- or heat-modified pectin. Front. Pharmacol. 4, 128 (2013). https://doi.org/10.3389/fphar.2013.00128

    Article  CAS  Google Scholar 

  38. Wang, H., Wang, H., Shi, S., Duan, J., Wang, S.: Structural characterization of a homogalacturonan from Capparis spinosa L. fruits and anti-complement activity of its sulfated derivative. Glycoconj. J. 29, 379–387 (2012). https://doi.org/10.1007/s10719-012-9418-x

    Article  CAS  Google Scholar 

  39. Xu, Y., Dong, Q., Qiu, H., Ma, C., Ding, K.: A homogalacturonan from the radix of Platycodon grandiflorum and the anti-angiogenesis activity of poly-/oligogalacturonic acids derived therefrom. Carbohydr. Res. 346, 1930–1936 (2011). https://doi.org/10.1016/j.carres.2011.05.011

    Article  CAS  Google Scholar 

  40. Zacharski, D., Brandt, S., Esch, S., Konig, S., Mormann, M., Ulrich-Merzenich, G., Hensel, A.: Xyloglucan from Tropaeolum majus seeds induces cellular differentiation of human keratinocytes by inhibition of EGFR phosphorylation and decreased activity of transcription factor CREB. Biomacromolecules. 16, 2157–2167 (2015). https://doi.org/10.1021/acs.biomac.5b00553

    Article  CAS  Google Scholar 

  41. Lu, M., Lin, T., Chang, C.: Chemical identification of a sulfated glucan from Antrodia cinnamomea and its anti-cancer functions via inhibition of EGFR and mTOR activity. Carbohydr. Polym. 202, 536–544 (2018). https://doi.org/10.1016/j.carbpol.2018.09.009

    Article  CAS  Google Scholar 

  42. Wang, H., Gao, T., Du, Y., Yang, H., Wei, L., Bi, H., Ni, W.: Anticancer and immunostimulating activities of a novel homogalacturonan from Hippophae rhamnoides L. berry. Carbohydr. Polym. 131, 288–296 (2015). https://doi.org/10.1016/j.carbpol.2015.06.021

    Article  CAS  Google Scholar 

  43. Cong, Q., Xiao, F., Liao, W., Dong, Q., Ding, K.: Structure and biological activities of an alginate from Sargassum fusiforme, and its sulfated derivative. Int. J. Biol. Macromol. 69, 252–259 (2014). https://doi.org/10.1016/j.ijbiomac.2014.05.056

    Article  CAS  Google Scholar 

  44. Yue, H., Liu, Y., Qu, H., Ding, K.: Structure analysis of a novel heteroxylan form Dendrobium officinale and anti-angiogenesis activities of its sulfated derivative. Int. J. Biol. Macromol. 103, 533–542 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.097

    Article  CAS  Google Scholar 

  45. Wang, P., Zhang, L., Yao, J., Shi, Y., Li, P., Ding, K.: An arabinogalactan from flowers of Panax notoginseng inhibits angiogenesis by BMP2/Smad/Id1 signaling. Carbohydr. Polym. 121, 328–335 (2015). https://doi.org/10.1016/j.carbpol.2014.11.073

    Article  CAS  Google Scholar 

  46. Chen, H., Cong, Q., Du, Z., Liao, W., Zhang, L., Yao, Y., Ding, K.: Sulfated fucoidan FP08S2 inhibits lung cancer cell growth in vivo by disrupting angiogenesis via targeting VEGFR2/VEGF and blocking VEGFR2/Erk/VEGF signaling. Cancer Lett. 382, 44–52 (2016). https://doi.org/10.1016/j.canlet.2016.08.020

    Article  CAS  Google Scholar 

  47. Wang, W., Chen, H., Zhang, L., Qin, Y., Cong, Q., Wang, P., Ding, K.: A fucoidan from Nemacystus decipiens disrupts angiogenesis through targeting bone morphogenetic protein 4. Carbohydr. Polym. 144, 305–314 (2016). https://doi.org/10.1016/j.carbpol.2016.02.068

    Article  CAS  Google Scholar 

  48. Hong, Q., Yang, B., Pei, Z., Zhang, Z., Ding, K.: WSS25 inhibits growth of xenografed hepatocellular cancer cells in nude mice by disrupting angiogenesis via blocking bone morphogenetic protein (BMP)/Smad/Id1 signaling. J. Biol. Chem. 285, 32638–32646 (2010). https://doi.org/10.1074/jbc.M110.105544

    Article  CAS  Google Scholar 

  49. Lin, L., Wang, P., Du, Z., Wang, W., Cong, Q., Zheng, C., Jin, C., Ding, K., Shao, C.: Structural elucidation of a pectin from flowers of Lonicera japonica and its antipancreatic cancer activity. Int. J. Biol. Macromol. 88, 130–137 (2016). https://doi.org/10.1016/j.ijbiomac.2016.03.025

    Article  CAS  Google Scholar 

  50. Liu, Q., Fang, J., Wang, P., Du, Z., Li, Y., Wang, S., Ding, K.: Characterization of a pectin from Lonicera japonica Thunb. and its inhibition effect on Aβ42 aggregation and promotion of neuritogenesis. Int. J. Biol. Macromol. 107, 112–120 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.154

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (2019YFC1711000), Shanghai Municipal Science and Technology Major Project, National Natural Science Foundation of China (31870801), Kan Ding.

Author information

Authors and Affiliations

Authors

Contributions

WL conducted all the biological experiment and drafted the manuscript; KD designed the experiments and revised the manuscript; PW supervised the research and reviewed the manuscript; XH performed the extraction and purification of polysaccharide; ZD carried out the statistical analyses.

Corresponding authors

Correspondence to Peipei Wang or Kan Ding.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no known competing financial interests of personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The structure of a novel polysaccharide from Lonicera japonica is elucidated.

• The polysaccharide is a homogalacturan composing of α-1,4-D-galacturonic acid.

• The polysaccharide might inhibit HMEC-1 cells tube formation and migration.

• The polysaccharide could disrupt EGFR/Raf/MEK/ERK and Dll4-Notch1 signaling axis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, W., Hu, X., Du, Z. et al. A homogalacturonan from Lonicera japonica Thunb. disrupts angiogenesis via epidermal growth factor receptor and Delta-like 4 associated signaling. Glycoconj J 39, 725–735 (2022). https://doi.org/10.1007/s10719-022-10088-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10088-2

Keywords

Navigation