skip to main content

Algorithm 1032: Bi-cubic Splines for Polyhedral Control Nets

Published:21 March 2023Publication History
Skip Abstract Section

Abstract

For control nets outlining a large class of topological polyhedra, not just tensor-product grids, bi-cubic polyhedral splines form a piecewise polynomial, first-order differentiable space that associates one function with each vertex. Akin to tensor-product splines, the resulting smooth surface approximates the polyhedron. Admissible polyhedral control nets consist of quadrilateral faces in a grid-like layout, star-configuration where n ≠ 4 quadrilateral faces join around an interior vertex, n-gon configurations, where 2n quadrilaterals surround an n-gon, polar configurations where a cone of n triangles meeting at a vertex is surrounded by a ribbon of n quadrilaterals, and three types of T-junctions where two quad-strips merge into one.

The bi-cubic pieces of a polyhedral spline have matching derivatives along their break lines, possibly after a known change of variables. The pieces are represented in Bernstein-Bézier form with coefficients depending linearly on the polyhedral control net, so that evaluation, differentiation, integration, moments, and so on, are no more costly than for standard tensor-product splines. Bi-cubic polyhedral splines can be used both to model geometry and for computing functions on the geometry. Although polyhedral splines do not offer nested refinement by refinement of the control net, polyhedral splines support engineering analysis of curved smooth objects. Coarse nets typically suffice since the splines efficiently model curved features. Algorithm 1032 is a C++ library with input-output example pairs and an IGES output choice.

Skip Supplemental Material Section

Supplemental Material

REFERENCES

  1. [1] Au F. T. K. and Cheung Y. K.. 1993. Isoparametric spline finite strip for plane structures. Computers & Structures 48 (1993), 2232.Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Beier Klaus-Peter and Chen Yifan. 1994. Highlight-line algorithm for realtime surface-quality assessment. Computer-Aided Design 26, 4 (1994), 268277.Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Bercovier Michel and Matskewich Tanya. 2017. Smooth Bézier surfaces over unstructured quadrilateral meshes. Lecture Notes of the Unione Matematica Italiana (2017).Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Blidia Ahmed, Mourrain Bernard, and Xu Gang. 2020. Geometrically smooth spline bases for data fitting and simulation. Computer Aided Geometric Design 78 (March2020), 101814.Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Braibant V. and Fleury C.. 1984. Shape optimal design using B-splines. Computer Methods in Applied Mechanics and Engineering 44 (1984), 247267.Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Buhmann Martin D.. 2009. Radial Basis Functions - Theory and Implementations. Cambridge monographs on applied and computational mathematics, Vol. 12. Cambridge University Press. I–X, 1–259 pages. http://www.cambridge.org/de/academic/subjects/mathematics/numerical-analysis/radial-basis-functions-theory-and-implementations.Google ScholarGoogle Scholar
  7. [7] Catmull E. and Clark J.. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10 (Sept.1978), 350355.Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Cirak F., Ortiz M., and Schröder P.. 2000. Subdivision surfaces: A new paradigm for thin-shell finite-element analysis. Internat. J. Numer. Methods Engrg. 47 (April2000).Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Cockburn B. (Bernardo), Karniadakis George, and Shu Chi-Wang. 2000. Discontinuous Galerkin Methods: Theory, Computation, and Applications, Vol. 11. Springer-Verlag Inc., pub-SV:adr. xi + 470 pages.Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Collin Annabelle, Sangalli Giancarlo, and Takacs Thomas. 2016. Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces. Computer Aided Geometric Design 47 (2016), 93113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Boor C. de. 1978. A Practical Guide to Splines. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Boor Carl de. 1986. B (asic)-Spline Basics.Technical Report. U. of Wisconsin, Mathematics Research Center.Google ScholarGoogle Scholar
  13. [13] Boor C. de. 1987. B-form basics. In Geometric Modeling: Algorithms and New Trends, Farin G. (Ed.). SIAM, 131148.Google ScholarGoogle Scholar
  14. [14] DeRose Tony, Kass Michael, and Truong Tien. 1998. Subdivision surfaces in character animation. ACM Press, New York, 8594. Google ScholarGoogle Scholar
  15. [15] Farin Gerald. 1988. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. Academic Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Hughes T. J. R., Cottrell J. A., and Bazilevs Y.. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194 (2005), 41354195.Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Kang Hongmei, Xu Jinlan, Chen Falai, and Deng Jiansong. 2015. A new basis for PHT-splines. Graphical Models 82 (2015), 149159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Kapl Mario, Sangalli Giancarlo, and Takacs Thomas. 2018. Construction of analysis-suitable G1 planar multi-patch parameterizations. Computer-Aided Design 97 (2018), 4155.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Kapl Mario, Sangalli Giancarlo, and Takacs Thomas. 2019. Isogeometric analysis with \(C^1\) functions on planar, unstructured quadrilateral meshes. The SMAI Journal of Computational Mathematics (2019), 6786.Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Kapl Mario, Sangalli Giancarlo, and Takacs Thomas. 2019. An isogeometric C\(^1\) subspace on unstructured multi-patch planar domains. Computer Aided Geometric Design 69 (2019), 5575.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. [21] Karčiauskas Kȩstutis, Nguyen Thien, and Peters Jörg. 2016. Generalizing bicubic splines for modeling and IGA with irregular layout. Computer-Aided Design 70 (2016), 2335.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Karčiauskas Kȩstutis and Peters Jörg. [n. d.]. Quad-net obstacle course. http://www.cise.ufl.edu/research/SurfLab/shape_gallery.shtml. Accessed: June 2020.Google ScholarGoogle Scholar
  23. [23] Karčiauskas Kȩstutis and Peters Jörg. 2015. Smooth multi-sided blending of biquadratic splines. Computers & Graphics 46 (2015), 172185.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Karčiauskas Kȩstutis and Peters Jörg. 2019. High quality refinable G-splines for locally quad-dominant meshes with T-gons. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 151161.Google ScholarGoogle Scholar
  25. [25] Karčiauskas Kȩstutis and Peters Jörg. 2020. Low degree splines for locally quad-dominant meshes. Computer Aided Geometric Design 83 (2020), 112.Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Karčiauskas Kȩstutis and Peters Jörg. 2020. Smooth polar caps for locally quad-dominant meshes. Computer Aided Geometric Design 81 (062020), 112. DOI:.PMC7343232.Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Karčiauskas Kȩstutis and Peters Jörg. 2021. Least degree \(G^1\)-refinable multi-sided surfaces suitable for inclusion into \(C^1\) bi-2 splines. Computer-Aided Design 130 (2021), 112.Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Karčiauskas Kȩstutis and Peters Jörg. 2022. Localized remeshing for polyhedral splines. Computers & Graphics 106 (2022), 5865.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Karčiauskas Kȩstutis, Peters Jörg, and Reif Ulrich. 2004. Shape characterization of subdivision surfaces–case studies. Computer Aided Geometric Design 21 (2004).Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [30] Lai Ming-Jun and Schumaker Larry L.. 2007. Spline Functions on Triangulations. Cambridge University Press. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Marussig B. and Hughes T. J. R.. [n. d.]. A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects. Arch. Comput. Methods Eng. 25, 4 ([n. d.]), 10591127. Erratum in: Arch. Comput. Methods Eng. 2018;25(4):1131.Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Myles Ashish and Peters Jörg. 2011. C\(^2\) splines covering polar configurations. Computer-Aided Design 43, 11 (2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. [33] Nguyen Thien, Karčiauskas Kȩstutis, and Peters Jörg. 2016. \({C}^1\) finite elements on non-tensor-product 2D and 3D manifolds. Appl. Math. Comput. 272, 1 (2016), 148158.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. [34] Nguyen Thien and Peters Jörg. 2016. Refinable \({C}^1\) spline elements for irregular quad layout. Computer Aided Geometric Design 43 (March 292016), 123130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Peters J.. 1991. Smooth interpolation of a mesh of curves. Constructive Approximation 7 (1991), 221247. Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Peters J.. 1995. \({C}^1\)-surface splines. SIAM J. Numer. Anal. 32, 2 (1995), 645666.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [37] Peters J.. 2019. Splines for meshes with irregularities. The SMAI Journal of Computational Mathematics S5 (2019), 161183.Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Peters J. and Reif U.. 2008. Subdivision Surfaces. Geometry and Computing, Vol. 3. Springer-Verlag, New York. i–204 pages.Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Peters J. and Wu X.. 2021. BezierView (short bview): A light weight viewer that renders Bezier patches. https://www.cise.ufl.edu/research/SurfLab/bview.Google ScholarGoogle Scholar
  40. [40] Reif Ulrich. 1998. TURBS–topologically unrestricted rational B-splines. Constructive Approximation 14 (1998), 5777.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Schramm Uwe and Pilkey Walter D.. 1993. The coupling of geometric descriptions and finite elements using NURBS - A study in shape optimization. Finite Elements in Analysis and Design 340 (1993), 1134.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. [42] Shyy Y. K., Fleury C., and Izadpanah K.. 1988. Shape optimal design using higher-order elements. Computer Methods in Applied Mechanics and Engineering 71 (1988), 99116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Technologies Wavefront. 2021. Wavefront .obj file. https://en.wikipedia.org/wiki/Wavefront_.obj_file.Google ScholarGoogle Scholar
  44. [44] Toshniwal D., Speleers H., Hiemstra R. R., and Hughes T. J. R.. 2017. Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 316 (2017), 10051061.Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] contributors Wikipedia. 2021. De Casteljau’s algorithm — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=De_Casteljau%27s_algorithm&oldid=1043959654.[Online; accessed 1-December-2021].Google ScholarGoogle Scholar
  46. [46] Wu Meng, Mourrain Bernard, Galligo André, and Nkonga Boniface. 2017. Hermite type spline spaces over rectangular meshes with complex topological structures. Communications in Computational Physics 21, 3 (2017), 835866.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Algorithm 1032: Bi-cubic Splines for Polyhedral Control Nets

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Article Metrics

        • Downloads (Last 12 months)173
        • Downloads (Last 6 weeks)16

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text

      HTML Format

      View this article in HTML Format .

      View HTML Format