Skip to main content
Log in

Formation of Ir–MgO Solid Solutions Analyzed with X-ray Absorption Spectroscopy

  • Original article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Thermal treatment of MgO-loaded Ir nanoparticles or Ir(OAc)3 formed Ir–MgO solid solutions. The valence of Ir in the Ir–MgO solid solution was 3 +, as evidenced by Ir L3-edge XANES combined with XPS analysis. A slight contraction of the Ir–O bond distance was observed compared to that of the nearest neighboring Mg–O bond in MgO. Ir–MgO dispersion exhibited a two-spike pattern depending on the treatment temperature owing to the formation and successive segregation of the solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Uenishi M, Taniguchi M, Tanaka H, Kimura M, Nishihata Y, Mizuki J, Kobayashi T (2005) Redox behavior of palladium at start-up in the Perovskite-type LaFePdOx automotive catalysts showing a self-regenerative function. Appl Catal B 57:267–273

    Article  CAS  Google Scholar 

  2. Ruiz Esquius J, Algara-Siller G, Spanos I, Freakley SJ, Schlögl R, Hutchings GJ (2020) Preparation of solid solution and layered IrOx–Ni(OH)2 oxygen evolution catalysts: toward optimizing iridium efficiency for OER. ACS Catal 10:14640–14648

    Article  CAS  Google Scholar 

  3. Joya KS, Subbaiyan NK, D’Souza F, de Groot HJ (2012) Surface-immobilized single-site iridium complexes for electrocatalytic water splitting. Angew Chem Int Ed 51:9601–9605

    Article  CAS  Google Scholar 

  4. Liu P, Huang X, Mance D, Copéret C (2021) Atomically dispersed iridium on MgO (111) nanosheets catalyses benzene–ethylene coupling towards styrene. Nat Catal 4:968–975

    Article  CAS  Google Scholar 

  5. Debefve LM, Hoffman AS, Yeh AJ, Runnebaum RC, Shulda S, Richards RM, Arslan I, Gates BC (2019) Iridium atoms bonded to crystalline powder MgO: characterization by imaging and spectroscopy. J Phys Chem C 124:459–468

    Article  Google Scholar 

  6. Li Z, Chen Y, Ji S, Tang Y, Chen W, Li A, Zhao J, Xiong Y, Wu Y, Gong Y (2020) Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat Chem 12:764–772

    Article  PubMed  Google Scholar 

  7. Guan E, Debefve L, Vasiliu M, Zhang S, Dixon DA, Gates BC (2019) MgO-supported iridium metal pair-site catalysts are more active and resistant to CO poisoning than analogous single-site catalysts for ethylene hydrogenation and hydrogen–deuterium exchange. ACS Catal 9:9545–9553

    Article  CAS  Google Scholar 

  8. Aydin C, Lu J, Browning ND, Gates BC (2012) A “Smart” catalyst: sinter-resistant supported Iridium clusters visualized with electron microscopy. Angw Chem 124:6031–6036

    Article  Google Scholar 

  9. Babucci M, Hoffman AS, Debefve LM, Kurtoglu SF, Bare SR, Gates BC, Uzun A (2020) Unraveling the individual influences of supports and ionic liquid coatings on the catalytic properties of supported iridium complexes and iridium clusters. J Catal 387:186–195

    Article  CAS  Google Scholar 

  10. Weber W, Zhao A, Gates B (1999) NaY zeolite-supported rhodium and iridium cluster catalysts: characterization by X-ray absorption spectroscopy during propene hydrogenation catalysis. J Catal 182:13–29

    Article  CAS  Google Scholar 

  11. Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. Chem Rev 110:6260–6279

    Article  CAS  PubMed  Google Scholar 

  12. Koningsberger D, Mojet B, Van Dorssen G, Ramaker D (2000) XAFS spectroscopy; fundamental principles and data analysis. Top Catal 10:143–155

    Article  CAS  Google Scholar 

  13. Reksten AH, Russell AE, Richardson PW, Thompson SJ, Mathisen K, Seland F, Sunde S (2020) An in situ XAS study of high surface-area IrO2 produced by the polymeric precursor synthesis. Phys Chem Chem Phys 22:18868–18881

    Article  CAS  PubMed  Google Scholar 

  14. Ankudinov AL, Ravel B, Rehr JJ, Conradson S (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58:7565

    Article  CAS  Google Scholar 

  15. Haraguchi Y, Michioka C, Matsuo A, Kindo K, Ueda H, Yoshimura K (2018) Magnetic ordering with an XY-like anisotropy in the honeycomb lattice iridates ZnIrO3 and MgIrO3 synthesized via a metathesis reaction. Phys Rev Mater 2:054411

    Article  CAS  Google Scholar 

  16. Okumura K, Hoshi H, Iiyoshi H, Takaba H (2022) Formation of a Pt–MgO solid solution: analysis by X-ray absorption fine structure spectroscopy. ACS Omega 7:27458–27468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choy J-H, Kim D-K, Demazeau G, Jung D-Y (1994) LIII-edge XANES study on unusually high valent iridium in a perovskite lattice. J Phys Chem 98:6258–6262

    Article  CAS  Google Scholar 

  18. Nong HN, Reier T, Oh H-S, Gliech M, Paciok P, Vu THT, Teschner D, Heggen M, Petkov V, Schlögl R (2018) A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat Catal 1:841–851

    Article  CAS  Google Scholar 

  19. Slater JC (1964) Atomic radii in crystals. J Chem Phys 41:3199–3204

    Article  CAS  Google Scholar 

  20. Gordon RB (1969) The structure of metals and alloys. In: Hume-Rothery W, Smallman RE, Haworth CW (eds) The metals and metallurgy trust, 5th edn. Elsevier, London

    Google Scholar 

  21. Yoshida T, Tanaka T, Yoshida H, Funabiki T, Yoshida S (1996) Study on the dispersion of nickel ions in the NiO−MgO system by X-ray absorption fine structure. J Phys Chem 100:2302–2309

    Article  CAS  Google Scholar 

  22. Choy J-H, Kim D-K, Hwang S-H, Demazeau G, Jung D-Y (1995) XANES and EXAFS studies on the Ir–O bond covalency in ionic iridium perovskites. J Am Chem Soc 117:8557–8566

    Article  CAS  Google Scholar 

  23. Xu C, Baum TH, Rheingold AL (1998) New precursors for chemical vapor deposition of iridium. Chem Mater 10:2329–2331

    Article  CAS  Google Scholar 

  24. Larimi AS, Kazemeini M, Khorasheh F (2016) Highly selective doped PtMgO nano-sheets for renewable hydrogen production from APR of glycerol. Int J Hydrog Energy 41:17390–17398

    Article  CAS  Google Scholar 

  25. Aphane M, Van Der Merwe E, Strydom C (2009) Influence of hydration time on the hydration of MgO in water and in a magnesium acetate solution. J Therm Anal Calorim 96:987–992

    Article  CAS  Google Scholar 

  26. Hanlon JM, Diaz LB, Balducci G, Stobbs BA, Bielewski M, Chung P, MacLaren I, Gregory DH (2015) Rapid surfactant-free synthesis of Mg(OH)2 nanoplates and pseudomorphic dehydration to MgO. CrystEngComm 17:5672–5679

    Article  CAS  Google Scholar 

  27. Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Arrigo R, Teschner D, Girgsdies F, Scherzer M, Greiner MT, Allan J (2016) The electronic structure of iridium and its oxides. Surf Interface Anal 48:261–273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C), 22K04833, 2022-2024.

Author information

Authors and Affiliations

Authors

Contributions

K. Okumura wrote the main manuscript text, prepared figures and the table, and collected XAFS data. H. Hoshi prepared the samples, and obtained data of XRD, N2 adsorption isotherms, TG-DTA, H2-TPR, and dispersion. H. Iiyoshi obtained TEM images.

Corresponding author

Correspondence to Kazu Okumura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 911 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okumura, K., Hoshi, H. & Iiyoshi, H. Formation of Ir–MgO Solid Solutions Analyzed with X-ray Absorption Spectroscopy. Catal Surv Asia 27, 95–106 (2023). https://doi.org/10.1007/s10563-022-09378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-022-09378-4

Keywords

Navigation