Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 4, 2022

Halide-sodalites: thermal behavior at low temperatures and local deviations from the average structure

  • Marius Wolpmann ORCID logo , Martin Etter ORCID logo , Andrea Kirsch ORCID logo , Filippo Balzaretti ORCID logo , Wilke Dononelli ORCID logo , Lars Robben ORCID logo EMAIL logo and Thorsten M. Gesing ORCID logo

Abstract

Sodalites of the general type |Na8X2|[T1T2O4]6 with X = Cl, Br, I have been synthesized for Al–Si, Ga–Si, Al–Ge and Ga–Ge as T1–T2 frameworks. The structures were examined using in-house and synchrotron X-ray diffraction, Raman spectroscopy, force-field structure optimizations and DFT based ab-initio molecular dynamics (MD) computations. Calculated phonon density of states (PDOS) of the 12 compounds show only minor differences within a framework composition with a lowering of certain phonon energies with increasing anion size. Earlier published Debye and Einstein temperatures obtained with a Debye-Einstein-anharmonicity (DEA) model approach are confirmed using the determined low-temperature lattice parameters (18 K–293 K) and show no correlation with the respective PDOS. Small-box refinements against radial pair distribution functions (PDF) allowed the determination of anisotropic displacement ellipsoids (ADP) for Na+ and O2−, indicating a strong dependency of the ADP of Na+ on the chemical composition. Significantly lower thermal displacements from MD calculations suggested an influence of structural displacements. For compounds with an aspherical ADP for sodium, structural models could be refined in which the sodium is located on two 8e or one 24i site (both partially occupied), and also temperature-dependent (100 K–300 K) for the compounds with Ga–Ge framework. 3D-plots of the bond-valence sums of Na+ further validate the structural differences. These results imply that the local structure of halide-sodalites in many cases is not best described by the known average structure and may even not be cubic.


Corresponding author: Lars Robben, Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; and MAPEX Center for Materials and Processes, University of Bremen, Bibliotheksstraße 1, D-28359 Bremen, Germany, E-mail:

Award Identifier / Grant number: RO5995/2-1

Acknowledgement

We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financial support through RO5995/2-1 and within the large instrument program (INST 144/335-1 FUGG Raman spectrometer, INST 144/435-1 FUGG TD X-ray powder diffractometer and INST 144/458-1 FUGG Std. X-ray powder diffractometer). We also acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III beamlines P02.1 and P21.1. We would like to thank Dr. Soham Banerjee for assistance in using beamline P21.1. Beamtime was allocated for proposals I-20200180 and I-20200535. AK would like to thank Niels Lefeld and Mathias Gogolin for beamtime assistance.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by Deutsche Forschungsgemeinschaft (DFG) (RO5995/2-1).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Weller, M. T. J. Chem. Soc., Dalton Trans. 2000, 4227–4240; https://doi.org/10.1039/b003800h.Search in Google Scholar

2. Krivovichev, S. V. Microporous Mesoporous Mater. 2013, 171, 223–229; https://doi.org/10.1016/j.micromeso.2012.12.030.Search in Google Scholar

3. Thomson, T. Med. Phys. J. 1811, 26, 303–308; https://doi.org/10.1080/14786441108563287.Search in Google Scholar

4. Jaeger, F. M. Trans. Faraday Soc. 1929, 25, 320; https://doi.org/10.1039/tf9292500320.Search in Google Scholar

5. Pauling, L. Z. Kristallogr. 1930, 74, 213–225; https://doi.org/10.1524/zkri.1930.74.1.213.Search in Google Scholar

6. Depmeier, W. Acta Crystallogr. Sect. B Struct. Sci. 1984, 40, 185–191; https://doi.org/10.1107/s0108768184001956.Search in Google Scholar

7. Johnson, G. M., Mead, P. J., Weller, M. T. Phys. Chem. Chem. Phys. 1999, 1, 3709–3714; https://doi.org/10.1039/a903373d.Search in Google Scholar

8. Henderson, C. M. B., Taylor, D. Phys. Chem. Miner. 1978, 2, 337–347; https://doi.org/10.1007/bf00307576.Search in Google Scholar

9. Taylor, D. Mineral. Mag. 1972, 38, 593–604; https://doi.org/10.1180/minmag.1972.038.297.08.Search in Google Scholar

10. Taylor, D. Mineral. Mag. J. Mineral Soc. 1968, 36, 761–769; https://doi.org/10.1180/minmag.1968.036.282.02.Search in Google Scholar

11. Petersen, H., Robben, L., Gesing, T. M. Z. Kristallogr. 2020, 235, 213–223; https://doi.org/10.1515/zkri-2020-0027.Search in Google Scholar

12. Robben, L., Wolpmann, M., Bottke, P., Petersen, H., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2018, 256, 206–213; https://doi.org/10.1016/j.micromeso.2017.08.019.Search in Google Scholar

13. Petersen, H., Robben, L., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2017, 242, 144–151; https://doi.org/10.1016/j.micromeso.2017.01.019.Search in Google Scholar

14. Poltz, I., Robben, L., Buhl, J.-C., Gesing, T. M. Microporous Mesoporous Mater. 2015, 203, 100–105; https://doi.org/10.1016/j.micromeso.2014.10.007.Search in Google Scholar

15. Šehović, M., Robben, L., Gesing, T. M. Z. Kristallogr. 2015, 230, 263–269; https://doi.org/10.1515/zkri-2014-1815.Search in Google Scholar

16. Robben, L., Gesing, T. M. J. Solid State Chem. 2013, 207, 13–20; https://doi.org/10.1016/j.jssc.2013.08.022.Search in Google Scholar

17. Gesing, T. M., Schmidt, B. C., Murshed, M. M. Mater. Res. Bull. 2010, 45, 1618–1624; https://doi.org/10.1016/j.materresbull.2010.07.014.Search in Google Scholar

18. Murshed, M. M., Baer, A. J., Gesing, T. M. Z. Kristallogr. 2008, 223, 213; https://doi.org/10.1524/zkri.2008.1018.Search in Google Scholar

19. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2008, 223, 213; https://doi.org/10.1524/zkri.2008.0015.Search in Google Scholar

20. Gesing, T. M. Z. Kristallogr. 2007, 222, 289–296; https://doi.org/10.1524/zkri.2007.222.6.289.Search in Google Scholar

21. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; https://doi.org/10.1524/zkri.2007.222.7.341.Search in Google Scholar

22. Buhl, J.-C., Gesing, T. M., Höfs, T., Rüscher, C. H. J. Solid State Chem. 2006, 179, 3877–3882; https://doi.org/10.1016/j.jssc.2006.08.031.Search in Google Scholar

23. Buhl, J.-C., Gesing, T. M., Kerkamm, I., Gurris, C. Microporous Mesoporous Mater. 2003, 65, 145–153; https://doi.org/10.1016/j.micromeso.2003.07.004.Search in Google Scholar

24. Gesing, T. M., Buhl, J.-C. Z. Kristallogr. – New Cryst. Struct. 2003, 218, 297; https://doi.org/10.1524/ncrs.2003.218.jg.297.Search in Google Scholar

25. Gesing, T. M. Z. Kristallogr. 2000, 215, 14; https://doi.org/10.1515/ncrs-2000-0110.Search in Google Scholar

26. Gesing, T. M., Buhl, J.-C. Z. Kristallogr. 2000, 215, 52; https://doi.org/10.1524/zkri.2000.215.7.413.Search in Google Scholar

27. Gesing, T. M. Bildung, Strukturen, Eigenschaften und Phasenbeziehungen von Zinkarsenat-, Gallosilikat- und Alumosilikat-Sodalithen, Cancriniten und verwandten Verbindungen. Habilitation Thesis, Gottfried Wilhelm Leibnitz Universität Hannover, Hannover, 2000.Search in Google Scholar

28. Johnson, G. M., Mead, P. J., Weller, M. T. Microporous Mesoporous Mater. 2000, 38, 445–460; https://doi.org/10.1016/s1387-1811(00)00169-4.Search in Google Scholar

29. Braunbarth, C. M., Behrens, P., Felsche, J. Solid State Ionics 1997, 101, 1273–1277; https://doi.org/10.1016/s0167-2738(97)00401-3.Search in Google Scholar

30. Depmeier, W. J. Alloys Compd. 1992, 188, 21–26; https://doi.org/10.1016/0925-8388(92)90638-p.Search in Google Scholar

31. Depmeier, W. Rev. Mineral. Geochem. 2005, 57, 203–240; https://doi.org/10.2138/rmg.2005.57.7.Search in Google Scholar

32. Fischer, R. X., Baur, W. H. Z. Kristallogr. 2009, 224, 185–197; https://doi.org/10.1524/zkri.2009.1147.Search in Google Scholar

33. Fischer, R. X., Baur, W. H. Zeolite-Type Crystal Structures and Their Chemistry. Framework Type Codes RON to STI; Springer-Verlag: Berlin, Heidelberg, 2009.10.1007/978-3-540-70884-1Search in Google Scholar

34. King, R. S. P., Dann, S. E., Elsegood, M. R. J., Kelly, P. F., Mortimer, R. J. Chem. Eur J. 2009, 15, 5441–5443; https://doi.org/10.1002/chem.200802551.Search in Google Scholar PubMed

35. Többens, D. M., Depmeier, W. Z. Kristallogr. 2001, 216, 226.Search in Google Scholar

36. Többens, D. M., Depmeier, W. Z. Kristallogr. 2001, 216, 288.10.1524/zkri.216.12.611.22487Search in Google Scholar

37. Leardini, L., Martucci, A., Cruciani, G. Microporous Mesoporous Mater. 2012, 151, 163–171; https://doi.org/10.1016/j.micromeso.2011.10.042.Search in Google Scholar

38. Depmeier, W. Phys. Chem. Miner. 1988, 15, 419–426; https://doi.org/10.1007/bf00311120.Search in Google Scholar

39. Wiebcke, M., Sieger, P., Felsche, J., Engelhardt, G., Behrens, P., Schefer, J. Z. Anorg. Allg. Chem. 1993, 619, 1321–1329; https://doi.org/10.1002/zaac.19936190728.Search in Google Scholar

40. Luger, S., Felsche, J., Fischer, P. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1987, 43, 1–3; https://doi.org/10.1107/s0108270187097233.Search in Google Scholar

41. Felsche, J., Luger, S., Fischer, P. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1987, 43, 809–811; https://doi.org/10.1107/s0108270187093983.Search in Google Scholar

42. Buehrer, W., Felsche, J., Luger, S. J. Chem. Phys. 1987, 87, 2316–2320; https://doi.org/10.1063/1.453110.Search in Google Scholar

43. Felsche, J., Luger, S. Thermochim. Acta 1987, 118, 35–55; https://doi.org/10.1016/0040-6031(87)80069-2.Search in Google Scholar

44. Wiebcke, M., Engelhardt, G., Felsche, J., Kempa, P. B., Sieger, P., Schefer, J., Fischer, P. J. Phys. Chem. 1992, 96, 392–397; https://doi.org/10.1021/j100180a073.Search in Google Scholar

45. Elsenhans, O., Bührer, W., Anderson, I., Nicol, J., Udovic, T., Rieutord, F., Felsche, J., Sieger, P., Engelhardt, G. Phys. B Condens. Matter 1992, 180–181, 661–664; https://doi.org/10.1016/0921-4526(92)90427-t.Search in Google Scholar

46. Bondareva, O. S., Malinovskii, Y. A. Sov. Phys. Crystallogr. 1983, 28, 273–276.Search in Google Scholar

47. McMullan, R. K., Ghose, S., Haga, N., Schomaker, V. Acta Crystallogr. Sect. B: Struct. Sci. 1996, 52, 616–627; https://doi.org/10.1107/s0108768196004132.Search in Google Scholar

48. Schliesser, J., Lilova, K., Pierce, E. M., Wu, L., Missimer, D. M., Woodfield, B. F., Navrotsky, A. J. Chem. Thermodyn. 2017, 114, 14–24; https://doi.org/10.1016/j.jct.2017.05.035.Search in Google Scholar

49. Robben, L., Abrahams, I., Fischer, M., Hull, S., Dove, M. T., Gesing, T. M. Z. Kristallogr. 2019, 234, 219–228; https://doi.org/10.1515/zkri-2018-2122.Search in Google Scholar

50. Wolpmann, M., Robben, L., Gesing, T. M. Z. Kristallogr. 2022, 237, 39–50; https://doi.org/10.1515/zkri-2022-0004.Search in Google Scholar

51. Filik, J., Ashton, A. W., Chang, P. C. Y., Chater, P. A., Day, S. J., Drakopoulos, M., Gerring, M. W., Hart, M. L., Magdysyuk, O. V., Michalik, S., Smith, A., Tang, C. C., Terrill, N. J., Wharmby, M. T., Wilhelm, H. J. Appl. Crystallogr. 2017, 50, 959–966; https://doi.org/10.1107/s1600576717004708.Search in Google Scholar

52. Juhás, P., Davis, T., Farrow, C. L., Billinge, S. J. L. J. Appl. Crystallogr. 2013, 46, 560–566.10.1107/S0021889813005190Search in Google Scholar

53. Farrow, C. L., Juhas, P., Liu, J. W., Bryndin, D., Božin, E. S., Bloch, J., Proffen, T., Billinge, S. J. L. J. Phys.: Condens. Matter 2007, 19, 335219; https://doi.org/10.1088/0953-8984/19/33/335219.Search in Google Scholar PubMed

54. Brown, I. D. Chem. Rev. 2009, 109, 6858–6919; https://doi.org/10.1021/cr900053k.Search in Google Scholar PubMed PubMed Central

55. Brown, I. D., Altermatt, D. Acta Crystallogr. Sect. B: Struct. Sci. 1985, 41, 244–247; https://doi.org/10.1107/s0108768185002063.Search in Google Scholar

56. Brese, N. E., O’Keeffe, M. Acta Crystallogr. Sect. B: Struct. Sci. 1991, 47, 192–197; https://doi.org/10.1107/s0108768190011041.Search in Google Scholar

57. Ahrens, J., Geveci, B., Law, C. Visualization Handbook; Elsevier: Oxford, UK, 2005, chapter 36; pp. 717–731.10.1016/B978-012387582-2/50038-1Search in Google Scholar

58. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

59. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979.10.1103/PhysRevB.50.17953Search in Google Scholar

60. Enkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H. A., Kristoffersen, H. H., Kuisma, M., Larsen, A. H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P. G., Ojanen, J., Olsen, T., Petzold, V., Romero, N. A., Stausholm-Møller, J., Strange, M., Tritsaris, G. A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G. K. H., Nieminen, R. M., Nørskov, J. K., Puska, M., Rantala, T. T., Schiøtz, J., Thygesen, K. S., Jacobsen, K. W. J. Phys.: Condens. Matter 2010, 22, 253202; https://doi.org/10.1088/0953-8984/22/25/253202.Search in Google Scholar PubMed

61. Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Bjerre Jensen, P., Kermode, J., Kitchin, J. R., Leonhard Kolsbjerg, E., Kubal, J., Kaasbjerg, K., Lysgaard, S., Bergmann Maronsson, J., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schiøtz, J., Schütt, O., Strange, M., Thygesen, K. S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z., Jacobsen, K. W. J. Phys.: Condens. Matter 2017, 29, 273002; https://doi.org/10.1088/1361-648x/aa680e.Search in Google Scholar PubMed

62. Monkhorst, H. J., Pack, J. D. Phys. Rev. B 1976, 13, 5188–5192; https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

63. Kresse, G., Furthmüller, J. Phys. Rev. B 1996, 54, 11169–11186; https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar PubMed

64. Gale, J. D. Z. Kristallogr. 2005, 220, 552–554; https://doi.org/10.1524/zkri.220.5.552.65070.Search in Google Scholar

65. Gale, J. D., Rohl, A. L. Mol. Simulat. 2003, 29, 291–341; https://doi.org/10.1080/0892702031000104887.Search in Google Scholar

66. Dutra, J. D. L., Bispo, T. D., de Freitas, S. M., Rezende, M. V. D. S. Comput. Phys. Commun. 2021, 265, 107996; https://doi.org/10.1016/j.cpc.2021.107996.Search in Google Scholar

67. Sierka, M., Joachim Sauer, A. Faraday Discuss 1997, 106, 41–62; https://doi.org/10.1039/a701492i.Search in Google Scholar

68. Binks, D. J., Grimes, R. W. J. Am. Ceram. Soc. 1993, 76, 2370–2372; https://doi.org/10.1111/j.1151-2916.1993.tb07779.x.Search in Google Scholar

69. Jackson, R. A., Bell, R. G., Catlow, C. R. A. Studies in Surface Science and Catalysis: Recent Advances in Zeolite Science; Klinowski, J., Barrie, P. J., Eds. Elsevier: Amsterdam, Vol. 52, 1989; pp. 203–208.10.1016/S0167-2991(08)60525-XSearch in Google Scholar

70. Wojdyr, M. J. Appl. Crystallogr. 2010, 43, 1126–1128; https://doi.org/10.1107/s0021889810030499.Search in Google Scholar

71. Poltz, I. Synthese und Struktur-Eigenschaftsbeziehungen gallogermanatischer Sodalithe |NaaXb(H2O)n|[GaGeO4]6 und verwandter Verbindungen. Dissertation, Universität Bremen, Bremen, 2015.Search in Google Scholar

72. Creighton, J. A., Deckman, H. W., Newsam, J. M. J. Phys. Chem. 1994, 98, 448–459; https://doi.org/10.1021/j100053a018.Search in Google Scholar

73. Mofrad, A. M., Peixoto, C., Blumeyer, J., Liu, J., Hunt, H. K., Hammond, K. D. J. Phys. Chem. C 2018, 122, 24765–24779; https://doi.org/10.1021/acs.jpcc.8b07633.Search in Google Scholar

74. Lilova, K., Pierce, E. M., Wu, L., Jubb, A. M., Subramani, T., Navrotsky, A. ACS Earth Space Chem. 2020, 4, 2153–2161; https://doi.org/10.1021/acsearthspacechem.0c00244.Search in Google Scholar

75. Hettmann, K., Wenzel, T., Marks, M., Markl, G. Am. Mineral. 2012, 97, 1653–1661; https://doi.org/10.2138/am.2012.4031.Search in Google Scholar

76. Ariai, J., Smith, S. R. P. J. Phys. C Solid State Phys. 1981, 14, 1193–1202; https://doi.org/10.1088/0022-3719/14/8/015.Search in Google Scholar

77. Mofrad, A. M., Schellenberg, P. S., Peixoto, C., Hunt, H. K., Hammond, K. D. Microporous Mesoporous Mater. 2020, 296, 109983; https://doi.org/10.1016/j.micromeso.2019.109983.Search in Google Scholar

78. Mofrad, A. M., Hammond, K. D. Microporous Mesoporous Mater. 2020, 309, 110466; https://doi.org/10.1016/j.micromeso.2020.110466.Search in Google Scholar

79. Chukanov, N. V., Vigasina, M. F., Zubkova, N. V., Pekov, I. V., Schäfer, C., Kasatkin, A. V., Yapaskurt, V. O., Pushcharovsky, D. Y. Minerals 2020, 10, 363; https://doi.org/10.3390/min10040363.Search in Google Scholar

80. Dove, M. T. Structure and Dynamics: An Atomic View of Materials; Oxford University Press: Oxford, 2002.10.1093/oso/9780198506775.001.0001Search in Google Scholar

81. Müser, M. H., Binder, K. Phys. Chem. Miner. 2001, 28, 746–755.10.1007/s002690100203Search in Google Scholar

82. Baur, W. H., Fischer, R. X. Chem. Mater. 2019, 31, 2401–2420; https://doi.org/10.1021/acs.chemmater.8b04919.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0037).


Received: 2022-06-02
Accepted: 2022-10-20
Published Online: 2022-11-04
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0037/html
Scroll to top button