Skip to main content
Log in

A water-soluble polysaccharide from Eucommia folium: the structural characterization and anti-tumor activity in vivo

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In this study, a water-soluble polysaccharide from Eucommia folium was extracted by hot water and purified using Sephadex G-200 gel columns. The results showed that the purified fraction (EFP) has a molecular weight of 9.98 × 105 Da and consisted of rhamnose, arabinose, galactose, glucose, mannose, xylose, galacturonic acid, and glucuronic acid (molar ratio: 0.226: 1.739: 2.183: 1: 0.155: 0.321: 0.358: 0.047). The combination of infrared spectroscopy and NMR analysis proved that EFP is an acidic polysaccharide whose main chain consists of α-L-Araf-(1 → , → 3,5)-α-Araf-(1 → , → 3)-β-Galp-(1 → , → 3,6)-β-Glcp-(1 → , → 2)-α-D-Manp-(1 → , → 4)-α-GalpA-(1 → , → 2,4)-α-Rhap-(1 → . In addition, the in vivo antitumoral activity of EFP was studied using a H22 tumor-bearing mice model. EFP effectively inhibited tumor growth in mice following intragastric administration. By Combining with the results of the apoptosis assay and JC-1 staining analysis, we confirmed that EFP induces apoptosis through the mitochondrial pathway. Furthermore, cell cycle analysis demonstrated that EFP blocks the cell cycle at S phase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang, C.J., Guo, X., Zhai, R.Q., Sun, C., Xiao, G., Chen, J., Wei, M.Y., Shao, C.L., Gu, Y.: Discovery of penipanoid C-inspired 2-(3,4,5-trimethoxybenzoyl)quinazolin-4(3H)-one derivatives as potential anticancer agents by inhibiting cell proliferation and inducing apoptosis in hepatocellular carcinoma cells. Eur J Med Chem 224, 113671 (2021). https://doi.org/10.1016/j.ejmech.2021.113671

    Article  CAS  Google Scholar 

  2. Zhang, C., Li, L.L., Hou, S., Shi, Z.H., Xu, W.J., Wang, Q., He, Y.H., Gong, Y.F., Fang, Z.R., Yang, Y.: Astragaloside IV inhibits hepatocellular carcinoma by continually suppressing the development of fibrosis and regulating pSmad3C/3L and Nrf2/HO-1 pathways. J Ethnopharmacol 279, 114350 (2021). https://doi.org/10.1016/j.jep.2021.114350

    Article  CAS  Google Scholar 

  3. Zhu, Q.W., Chen, J.H., Li, Q., Wang, T., Li, H.B.: Antitumor activity of polysaccharide from Laminaria japonica on mice bearing H22 liver cancer. Int J Biol Macromol 92, 156–158 (2016). https://doi.org/10.1016/j.ijbiomac.2016.06.090

    Article  CAS  Google Scholar 

  4. Li, W.Z., Wang, Y.F., Zhou, X.B., Pan, X.H., Lü, J.H., Sun, H.L., Xie, Z.P., Chen, S.Y., Gao, X.: The anti-tumor efficacy of 20(S)-protopanaxadiol, an active metabolite of ginseng, according to fasting on hepatocellular carcinoma. J. Ginseng Res. 46(1), 167–174 (2021). https://doi.org/10.1016/j.jgr.2021.06.002

    Article  Google Scholar 

  5. Trojan, J., Zangos, S., Schnitzbauer, A.A.: Diagnostics and Treatment of Hepatocellular Carcinoma in 2016: Standards and Developments. Visc Med 32(2), 116–120 (2016). https://doi.org/10.1159/000445730

    Article  Google Scholar 

  6. Chen, P., Liu, H.P., Ji, H.H., Sun, N.X., Feng, Y.Y.: A cold-water soluble polysaccharide isolated from Grifola frondosa induces the apoptosis of HepG2 cells through mitochondrial passway. Int J Biol Macromol 125, 1232–1241 (2019). https://doi.org/10.1016/j.ijbiomac.2018.09.098

    Article  CAS  Google Scholar 

  7. Mao, G.H., Zhang, Z.H., Fei, F., Ding, Y.Y., Zhang, W.J., Chen, H., Ali, S.S., Zhao, T., Feng, W.W., Wu, X.Y., Yang, L.Q.: Effect of Grifola frondosa polysaccharide on anti-tumor activity in combination with 5-Fu in Heps-bearing mice. Int J Biol Macromol 121, 930–935 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.073

    Article  CAS  Google Scholar 

  8. Zhao, T., Mao, G.H., Zhang, M., Zou, Y., Feng, W.W., Gu, X.Y., Zhu, Y., Mao, R.W., Yang, L.Q., Wu, X.Y.: Enhanced antitumor and reduced toxicity effect of Schisanreae polysaccharide in 5-Fu treated Heps-bearing mice. Int J Biol Macromol 63, 114–118 (2014). https://doi.org/10.1016/j.ijbiomac.2013.10.037

    Article  CAS  Google Scholar 

  9. Torbenson, M.S.: Hepatocellular carcinoma: making sense of morphological heterogeneity, growth patterns, and subtypes. Hum Pathol 112, 86–101 (2021). https://doi.org/10.1016/j.humpath.2020.12.009

    Article  Google Scholar 

  10. Zhao, Y.N., Sun, H.Y., Ma, L., Liu, A.J.: Polysaccharides from the peels of Citrus aurantifolia induce apoptosis in transplanted H22 cells in mice. Int J Biol Macromol 101, 680–689 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.149

    Article  CAS  Google Scholar 

  11. Khan, T., Date, A., Chawda, H., Patel, K.: Polysaccharides as potential anticancer agents-A review of their progress. Carbohydr Polym 210, 412–428 (2019). https://doi.org/10.1016/j.carbpol.2019.01.064

    Article  CAS  Google Scholar 

  12. Wang, N.F., Wu, Y., Jia, G.G., Wang, C.L., Xiao, D.G., Goff, H.D., Guo, Q.B.: Structural characterization and immunomodulatory activity of mycelium polysaccharide from liquid fermentation of Monascus purpureus (Hong Qu). Carbohydr Polym 262, 117945 (2021). https://doi.org/10.1016/j.carbpol.2021.117945

    Article  CAS  Google Scholar 

  13. Liu, Y., Zhang, J.J., Meng, Z.L.: Purification, characterization and anti-tumor activities of polysaccharides extracted from wild Russula griseocarnosa. Int J Biol Macromol 109, 1054–1060 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.093

    Article  CAS  Google Scholar 

  14. Niu, J.F., Wang, S.P., Wang, B.L., Chen, L.J., Zhao, G.M., Liu, S., Wang, S.Q., Wang, Z.Z.: Structure and anti-tumor activity of a polysaccharide from Bletilla ochracea Schltr. Int J Biol Macromol 154, 1548–1555 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.039

    Article  CAS  Google Scholar 

  15. Li, H.H., Mi, Y., Duan, Z.G., Ma, P., Fan, D.D.: Structural characterization and immunomodulatory activity of a polysaccharide from Eurotium cristatum. Int J Biol Macromol 162, 609–617 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.099

    Article  CAS  Google Scholar 

  16. Li, W.F., Hu, X.Y., Wang, S.P., Jiao, Z.R., Sun, T.Y., Liu, T.Q., Song, K.D.: Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int J Biol Macromol 145, 985–997 (2020). https://doi.org/10.1016/j.ijbiomac.2019.09.189

    Article  CAS  Google Scholar 

  17. Xie, J.H., Tang, W., Jin, M.L., Li, J.E., Xie, M.Y.: Recent advances in bioactive polysaccharides from Lycium barbarum L., Zizyphus jujuba Mill, Plantago spp., and Morus spp.: Structures and functionalities, Food Hydrocolloids 60,148–160 (2016). https://doi.org/10.1016/j.foodhyd.2016.03.030

  18. Feng, H.B., Fan, J., Song, Z.H., Du, X.G., Chen, Y., Wang, J.S., Song, G.D.: Characterization and immunoenhancement activities of Eucommia ulmoides polysaccharides. Carbohydr Polym 136, 803–811 (2016). https://doi.org/10.1016/j.carbpol.2015.09.079

    Article  CAS  Google Scholar 

  19. Xu, J.K., Hou, H.J., Hu, J.P., Liu, B.C.: Optimized microwave extraction, characterization and antioxidant capacity of biological polysaccharides from Eucommia ulmoides Oliver leaf. Sci Rep 8(1), 6561 (2018). https://doi.org/10.1038/s41598-018-24957-0

    Article  CAS  Google Scholar 

  20. Huang, W., Xue, A., Niu, H., Jia, Z., Wang, J.W.: Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chem. 114(3), 1147–1154 (2009). https://doi.org/10.1016/j.foodchem.2008.10.079

    Article  CAS  Google Scholar 

  21. Ren, X.M., Han, Z.Z., Song, L.X., Lv, Z.Y., Yang, Y.B., Xiao, Y., Zhang, Z.-J.: Four new phenolic compounds from the tender leaves of Eucommia ulmoides Oliv. and their anti-inflammatory activities, Phytochem Lett 44,173–177 (2021). https://doi.org/10.1016/j.phytol.2021.06.020

  22. Xing, Y.F., He, D., Wang, Y., Zeng, W., Zhang, C., Lu, Y., Su, N., Kong, Y.H., Xing, X.H.: Chemical constituents, biological functions and pharmacological effects for comprehensive utilization of Eucommia ulmoides Oliver. Food Sci. Human Wellness 8(2), 177–188 (2019). https://doi.org/10.1016/j.fshw.2019.03.013

    Article  Google Scholar 

  23. Deng, Y.Q., Ma, F.B., Ruiz-Ortega, L.I., Peng, Y., Tian, Y., He, W.Q., Tang, B.: Fabrication of strontium Eucommia ulmoides polysaccharides and in vitro evaluation of their osteoimmunomodulatory property. Int J Biol Macromol 140, 727–735 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.145

    Article  CAS  Google Scholar 

  24. Tian, W.T., Zhang, X.W., Liu, H.P., Wen, Y.H., Li, H.R., Gao, J.: Structural characterization of an acid polysaccharide from Pinellia ternata and its induction effect on apoptosis of Hep G2 cells. Int J Biol Macromol 153, 451–460 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.219

    Article  CAS  Google Scholar 

  25. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A.: Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 28(3), 350–356 (1956). https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  26. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72(1–2), 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  27. Bitter, T., Muir, H.M.: A modified uronic acid carbazole reaction. Anal. Biochem. 4(4), 330–334 (1962). https://doi.org/10.1016/0003-2697(62)90095-7

    Article  CAS  Google Scholar 

  28. Gu, S.S., Sun, H.Q., Zhang, X.L., Huang, F.N., Pan, L.C., Zhu, Z.Y.: Structural characterization and inhibitions on α-glucosidase and α-amylase of alkali-extracted water-soluble polysaccharide from Annona squamosa residue. Int J Biol Macromol 166, 730–740 (2021). https://doi.org/10.1016/j.ijbiomac.2020.10.230

    Article  CAS  Google Scholar 

  29. Zhang, S., Song, Z., Shi, L., Zhou, L., Zhang, J., Cui, J., Li, Y., Jin, D.Q., Ohizumi, Y., Xu, J., Guo, Y.: A dandelion polysaccharide and its selenium nanoparticles: Structure features and evaluation of anti-tumor activity in zebrafish models. Carbohydr Polym 270, 118365 (2021). https://doi.org/10.1016/j.carbpol.2021.118365

    Article  CAS  Google Scholar 

  30. Wang, Q., Niu, L.L., Liu, H.P., Wu, Y.R., Li, M.Y., Jia, Q.: Structural characterization of a novel polysaccharide from Pleurotus citrinopileatus and its antitumor activity on H22 tumor-bearing mice. Int J Biol Macromol 168, 251–260 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.053

    Article  CAS  Google Scholar 

  31. Guo, X.Y., Kang, J., Xu, Z.Y., Guo, Q.B., Zhang, L.F., Ning, H.F., Cui, S.W.: Triple-helix polysaccharides: Formation mechanisms and analytical methods. Carbohydr Polym 262, 117962 (2021). https://doi.org/10.1016/j.carbpol.2021.117962

    Article  CAS  Google Scholar 

  32. Feng, Y.Y., Ji, H.Y., Dong, X.D., Yu, J., Liu, A.J.: Polysaccharide extracted from Atractylodes macrocephala Koidz (PAMK) induce apoptosis in transplanted H22 cells in mice. Int J Biol Macromol 137, 604–611 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.059

    Article  CAS  Google Scholar 

  33. Wang, X.T., Zhu, Z.Y., Zhao, L., Sun, H.Q., Meng, M., Zhang, J.Y., Zhang, Y.M.: Structural characterization and inhibition on alpha-d-glucosidase activity of non-starch polysaccharides from Fagopyrum tartaricum. Carbohydr Polym 153, 679–685 (2016). https://doi.org/10.1016/j.carbpol.2016.08.024

    Article  CAS  Google Scholar 

  34. Yang, M., Zhang, Z.L., He, Y., Li, C.L., Wang, J.M., Ma, X.: Study on the structure characterization and moisturizing effect of Tremella polysaccharide fermented from GCMCC5.39, Food Sci Human Wellness 10(4),471–479 (2021). https://doi.org/10.1016/j.fshw.2021.04.009

  35. Zhan, Q.P., Wang, Q., Lin, R.G., He, P., Lai, F.R., Zhang, M.M., Wu, H.: Structural characterization and immunomodulatory activity of a novel acid polysaccharide isolated from the pulp of Rosa laevigata Michx fruit. Int J Biol Macromol 145, 1080–1090 (2020). https://doi.org/10.1016/j.ijbiomac.2019.09.201

    Article  CAS  Google Scholar 

  36. Tang, Y., Zhu, Z.Y., Liu, Y., Sun, H.Q., Song, Q.Y., Zhang, Y.M.: The chemical structure and anti-aging bioactivity of an acid polysaccharide obtained from rose buds. Food Funct 9(4), 2300–2312 (2018). https://doi.org/10.1039/c8fo00206a

    Article  CAS  Google Scholar 

  37. Lin, Y.Y., Zeng, H.Y., Wang, K., Lin, H., Li, P.F., Huang, Y.X., Zhou, S.Y., Zhang, W., Chen, C., Fan, H.J.: Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: Process optimization, structure characterization and antioxidant activity. Int J Biol Macromol 136, 305–315 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.064

    Article  CAS  Google Scholar 

  38. Wu, Z., Li, H., Wang, Y.D., Yang, D.J., Tan, H.J., Zhan, Y., Yang, Y., Luo, Y., Chen, G.: Optimization extraction, structural features and antitumor activity of polysaccharides from Z. jujuba cv. Ruoqiangzao seeds, Int J Biol Macromol 135,1151–1161 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.020

  39. Yu, S.S., Yu, J., Dong, X.D., Li, S., Liu, A.J.: Structural characteristics and anti-tumor/-oxidant activity in vitro of an acidic polysaccharide from Gynostemma pentaphyllum. Int J Biol Macromol 161, 721–728 (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.274

    Article  CAS  Google Scholar 

  40. Zhang, Y., Zhou, T., Wang, H.J., Cui, Z., Cheng, F., Wang, K.P.: Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.) Diels, Carbohydr Polym 147,401–408 (2016). https://doi.org/10.1016/j.carbpol.2016.04.002

  41. Hao, Y.L., Sun, H.Q., Zhang, X.J., Wu, L.R., Zhu, Z.Y.: A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: Hypoglycemic activity in vitro and chemical structure. J Mol Struct 1220 (2020). https://doi.org/10.1016/j.molstruc.2020.128717

  42. Chen, Y. J., Jiang, X., Xie, H. Q.: Structural characterization and antitumor activity of a polysaccharide from ramulus mori. Carbohydr Polym 190, 232–239 (2018). https://doi.org/10.1016/j.carbpol.2018.02.036

  43. Xia, Y.G., Liang, J., Yang, B.Y., Wang, Q.H., Kuang, H.X.: Structural studies of an arabinan from the stems of Ephedra sinica by methylation analysis and 1D and 2D NMR spectroscopy. Carbohydr Polym 121, 449–456 (2015). https://doi.org/10.1016/j.carbpol.2014.12.058

    Article  CAS  Google Scholar 

  44. Ogawa, K., Tsurugi, J., Watanabe, T.: Complex of gel-forming β-1,3-D-glucan with congored in alkaline solution. Chem. Lett. 1(8), 689–692 (1972). https://doi.org/10.1246/cl.1972.689

    Article  Google Scholar 

  45. Riemann, M., Andreas, N., Fedoseeva, M., Meier, E., Weih, D., Freytag, H., Schmidt-Ullrich, R., Klein, U., Wang, Z.Q., Weih, F.: Central immune tolerance depends on crosstalk between the classical and alternative NF-kappaB pathways in medullary thymic epithelial cells. J Autoimmun 81, 56–67 (2017). https://doi.org/10.1016/j.jaut.2017.03.007

    Article  CAS  Google Scholar 

  46. Yang, B., Xiao, B., Sun, T.Y.: Antitumor and immunomodulatory activity of Astragalus membranaceus polysaccharides in H22 tumor-bearing mice. Int J Biol Macromol 62, 287–290 (2013). https://doi.org/10.1016/j.ijbiomac.2013.09.016

    Article  CAS  Google Scholar 

  47. Li, C.W., Chen, T.T.: A novel hematoxylin and eosin stain assay for detection of the parasitic dinoflagellate Amoebophrya. Harmful Algae 62, 30–36 (2017). https://doi.org/10.1016/j.hal.2016.12.003

    Article  CAS  Google Scholar 

  48. Wang, K.L., Chu, D.X., Wu, J., Zhao, M.L., Zhang, M.M., Li, B.J., Du, W.J., Du, J.M., Guo, R.X.: WITHDRAWN: Cinobufagin induced cell apoptosis and protective autophagy through the ROS/MAPK signaling pathway. Life Sci 116642 (2019). https://doi.org/10.1016/j.lfs.2019.116642

  49. Nair, J.J., Staden, J.V.: Cell cycle modulatory effects of Amaryllidaceae alkaloids. Life Sci 213, 94–101 (2018). https://doi.org/10.1016/j.lfs.2018.08.073

    Article  CAS  Google Scholar 

  50. Lai, C.Y., Hung, J.T., Lin, H.H., Yu, A.L., Chen, S.H., Tsai, Y.C., Shao, L.E., Yang, W.B., Yu, J.: Immunomodulatory and adjuvant activities of a polysaccharide extract of Ganoderma lucidum in vivo and in vitro. Vaccine 28(31), 4945–4954 (2010). https://doi.org/10.1016/j.vaccine.2010.05.037

    Article  CAS  Google Scholar 

  51. Zhao, L.Y., Dong, Y.H., Chen, G.T., Hu, Q.H.: Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydr Polym 80(3), 783–789 (2010). https://doi.org/10.1016/j.carbpol.2009.12.029

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (No.31801568).

Author information

Authors and Affiliations

Authors

Contributions

Zhi-Qian Yan: Conceptualization, Investigation, Data curation, Writing-Original draft preparation, Writing-Reviewing and Editing. Su-Yun Ding: Methodology. Pei Chen: Software, Formal analysis. Hui-Ping Liu: Resources, Project administration, Funding acquisition. Meng-Li Chang: Software, Validation. Shu-Yuan Shi: supervised.

Corresponding author

Correspondence to Hui-Ping Liu.

Ethics declarations

Conflicts of interest/Competing interests

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any products, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled

Ethical approval

The animal experiments were conducted in accordance with the Regulations on the Administration of Laboratory Animals

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, ZQ., Ding, SY., Chen, P. et al. A water-soluble polysaccharide from Eucommia folium: the structural characterization and anti-tumor activity in vivo. Glycoconj J 39, 759–772 (2022). https://doi.org/10.1007/s10719-022-10086-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10086-4

Keywords

Navigation