Skip to main content
Log in

Local positivity and effective Diophantine approximation

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

In this paper we present a new approach to prove effective results in Diophantine approximation. This approach involves measures of local positivity of divisors combined with Faltings’s version of Siegel’s lemma instead of a zero estimate such as Dyson’s lemma. We then use it to prove an effective theorem on the simultaneous approximation of two algebraic numbers satisfying an algebraic equation with complex coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, A.: Simultaneous rational approximations to certain algebraic numbers. Proc. Camb. Philos. Soc. 63, 693–702 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bombieri, E., Cohen, P.B.: Effective Diophantine approximation on ${\bf G}_M$. II. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24(2), 205–225 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Bauer, T., Di Rocco, S., Harbourne, B., Kapustka, M., Knutsen, K., Syzdek, W., Szemberg, T.: A primer on Seshadri constants. In: Interactions of Classical and Numerical Algebraic Geometry. Contemporary Mathematics, vol. 496, pp. 33–70. American Mathematical Society, Providence (2009)

  4. Bennett, M.A.: Simultaneous approximation to pairs of algebraic numbers. In: Number Theory (Halifax, NS, 1994) CMS Conference Proceedings, vol. 15, pp. 55–65. American Mathematical Society, Providence (1994)

  5. Bugeaud, Y., Győry, K.: Bounds for the solutions of Thue–Mahler equations and norm form equations. Acta Arith. 74(3), 273–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bombieri, E., Mueller, J.: On effective measures of irrationality for $\root r \of {a/b}$ and related numbers. J. Reine Angew. Math. 342, 173–196 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Bombieri, E.: On the Thue–Siegel–Dyson theorem. Acta Math. 148, 255–296 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bombieri, E.: Lectures on the Thue principle. In: Analytic Number Theory and Diophantine Problems (Stillwater, OK, 1984): Progress in Mathematics, vol. 70, pp. 15–52. Birkhäuser, Boston (1984)

  9. Bombieri, E.: Effective Diophantine approximation on ${\mathbf{G}}_m$. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20(1), 61–89 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Bombieri, E.: The equivariant Thue–Siegel method. In: Arithmetic geometry (Cortona,: Sympos. Math., XXXVII), vol. 1997, pp. 70–86. Cambridge University Press, Cambridge (1994)

  11. Bost, J.-B.: Périodes et isogenies des variétés abéliennes sur les corps de nombres (d’après D. Masser et G. Wüstholz), no. 237, Séminaire Bourbaki, vol. 1994/95, pp. Exp. No. 795, 4, 115–161 (1996)

  12. Bourbaki, N.: Algebra II. Chapters 4–7. In: Elements of Mathematics (Berlin). Springer, Berlin (2003) (Translated from the 1981 French edition by P. M. Cohn and J. Howie, Reprint of the 1990 English edition [Springer, Berlin; MR1080964 (91h:00003)])

  13. Bugeaud, Y.: Bornes effectives pour les solutions des équations en $S$-unités et des équations de Thue-Mahler. J. Number Theory 71(2), 227–244 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bombieri, E., Vaaler, J.: On Siegel’s lemma. Invent. Math. 73(1), 11–32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bombieri, E., Van der Poorten, A.J., Vaaler, J.D.: Effective measures of irrationality for cubic extensions of number fields. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(2), 211–248 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Chambert-Loir, A.: Théorèmes d’algébricité en géométrie diophantienne (d’après J.-B. Bost, Y. André, D. & G. Chudnovsky), no. 282. Séminaire Bourbaki, vol. 2000/2001, pp. Exp. No. 886, viii, 175–209 (2002)

  17. Campana, F., Peternell, T.: Algebraicity of the ample cone of projective varieties. J. Reine Angew. Math. 407, 160–166 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Corvaja, P., Zannier, U.: On a general Thue’s equation. Am. J. Math. 126(5), 1033–1055 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. del Busto, G.F.: A Matsusaka-type theorem on surfaces. J. Algebr. Geom. 5(3), 513–520 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Demailly, J.-P.: Hermitian, singular, metrics on positive line bundles. In: Complex Algebraic Varieties (Bayreuth, 1990), Lecture Notes in Mathematics, vol. 1507, pp. 87–104 . Springer, Berlin (1992)

  21. Dyson, F.J.: The approximation to algebraic numbers by rationals. Acta Math. 79, 225–240 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  22. Evertse, J.-H., Ferretti, R.G.: Diophantine inequalities on projective varieties. Int. Math. Res. Not. 202(25), 1295–1330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Evertse, J.-H., Ferretti, R.G.: A generalization of the Subspace Theorem with polynomials of higher degree. In: Diophantine Approximation, Dev. Math., vol. 16, pp. 175–198. Springer, New York (2008)

  24. Esnault, H., Viehweg, E.: Dyson’s lemma for polynomials in several variables (and the theorem of Roth). Invent. Math. 78, 445–490 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Faltings, G.: Diophantine approximation on abelian varieties. Ann. Math. (2) 133(3), 549–576 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fel’dman, N.I.: An effective power sharpening of a theorem of Liouville. Izv. Akad. Nauk SSSR Ser. Mat. 35, 973–990 (1971)

    MathSciNet  Google Scholar 

  27. Ferretti, R.G.: Mumford’s degree of contact and Diophantine approximations. Compos. Math. 121(3), 247–262 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fulger, M., Kollár, J., Lehmann, B.: Volume and Hilbert function of $\mathbb{R} $-divisors. Mich. Math. J. 65(2), 371–387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Faltings, G., Wüstholz, G.: Diophantine approximations on projective spaces. Invent. Math. 116(1–3), 109–138 (1994). (English)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grieve, N.: Diophantine approximation constants for varieties over function fields. Mich. Math. J. 67(2), 371–404 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Heier, G., Levin, A.: A generalized Schmidt subspace theorem for closed subschemes. arXiv:1712.02456 (2017)

  32. Hindry, M., Silverman, J.H.: Diophantine Geometry. Graduate Texts in Mathematics, vol. 201. Springer, New York (2000)

    MATH  Google Scholar 

  33. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  34. Laurent, M.: Sur quelques résultats récents de transcendance. J. Arith. 198(200), 209–230 (1991)

    MATH  Google Scholar 

  35. Lazarsfeld, R.: Positivity in algebraic geometry. I. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Classical Setting: Line Bundles and Linear Series, vol. 48. Springer, Berlin (2004)

  36. Liouville, J.: Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationnelles algébriques. J. Math. Pures Appl. 18, 133–142 (1851)

    Google Scholar 

  37. Matsusaka, T.: On canonically polarized varieties. II. Am. J. Math. 92, 283–292 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  38. Matsusaka, T., Mumford, D.: Two fundamental theorems on deformations of polarized varieties. Am. J. Math. 86, 668–684 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  39. McKinnon, D., Roth, M.: Seshadri constants, Diophantine approximation, and Roth’s theorem for arbitrary varieties. Invent. Math. 200(2), 513–583 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nakamaye, M.: Diophantine approximation on algebraic varieties. J. Théor. Nombres Bordx. 11(2), 439–502 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Osgood, C.F.: The simultaneous diophantine approximation of certain $k$th roots. Proc. Camb. Philos. Soc. 67, 75–86 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rickert, J.H.: Simultaneous rational approximations and related Diophantine equations. Math. Proc. Camb. Philos. Soc. 113(3), 461–472 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Roth, K.F.: Rational approximations to algebraic numbers. Mathematika 2(1), 1–20 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ru, M., Vojta, P.: A birational nevanlinna constant and its consequences. arXiv:1608.05382 (2016)

  45. Ru, M., Wang, J.T.-Y.: A subspace theorem for subvarieties. Algebra Number Theory 11(10), 2323–2337 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schmidt, W.M.: Simultaneous approximation to algebraic numbers by rationals. Acta Math. 125, 189–201 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  47. Seshadri, C.S.: Quotient spaces modulo reductive algebraic groups. Ann. Math. (2) 95, 511–556 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  48. Siegel, C.L.: Über einige Anwendungen Diophantischer approximationen. Abh. Preuß. Akad. Wiss., Phys.-Math. Kl. 1929(1), 70 (1929). (German)

    MATH  Google Scholar 

  49. Siu, Y.T.: An effective Matsusaka big theorem. Ann. Inst. Fourier (Grenoble) 43(5), 1387–1405 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. Siu, Y.-T.: A new bound for the effective Matsusaka big theorem. Houston J. Math. 28, 389–409 (2002)

    MathSciNet  MATH  Google Scholar 

  51. Vojta, P.: Siegel’s theorem in the compact case. Ann. Math. 133(3), 509–548 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, J.T.-Y.: An effective Schmidt’s subspace theorem over function fields. Math. Z. 246(4), 811–844 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Matteo Costantini, Jan-Hendrik Evertse, Nathan Grieve, Walter Gubler, Ariyan Javanpeykar, Lars Kühne, Victor Lozovanu, Martin Lüdtke, Marco Maculan, David McKinnon, Mike Roth, Paul Vojta and Jürgen Wolfart for many helpful discussions and suggestions. I am grateful to János Kollár and Jakob Stix for their comments on an earlier version of this paper. Furthermore, I would like to express my gratitude towards my former thesis advisor Alex Küronya for his support and many useful comments. Finally, I thank the anonymous referee for their helpful comments that improved the quality of the paper. The author was partially supported by the LOEWE grant “Uniformized Structures in Algebra and Geometry”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Nickel.

Additional information

Communicated by Daniel Greb.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nickel, M. Local positivity and effective Diophantine approximation. Abh. Math. Semin. Univ. Hambg. 92, 125–138 (2022). https://doi.org/10.1007/s12188-022-00260-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-022-00260-8

Keywords

Mathematics Subject Classification

Navigation