1932

Abstract

Tuft cells are found in tissues with distinct stem cell compartments, tissue architecture, and luminal exposures but converge on a shared transcriptional program, including expression of taste transduction signaling pathways. Here, we summarize seminal and recent findings on tuft cells, focusing on major categories of function—instigation of type 2 cytokine responses, orchestration of antimicrobial responses, and emerging roles in tissue repair—and describe tuft cell–derived molecules used to affect these functional programs. We review what is known about the development of tuft cells from epithelial progenitors under homeostatic conditions and during disease. Finally, we discuss evidence that immature, or nascent, tuft cells with potential for diverse functions are driven toward dominant effector programs by tissue- or perturbation-specific contextual cues, which may result in heterogeneous mature tuft cell phenotypes both within and between tissues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042320-112212
2023-01-24
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathol-042320-112212.html?itemId=/content/journals/10.1146/annurev-pathol-042320-112212&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    O'Leary CE, Schneider C, Locksley RM. 2019. Tuft cells—systemically dispersed sensory epithelia integrating immune and neural circuitry. Annu. Rev. Immunol. 37:47–72
    [Google Scholar]
  2. 2.
    von Moltke J. 2018. Intestinal tuft cells. Physiology of the Gastrointestinal Tracted. H Said Amsterdam: Academic
    [Google Scholar]
  3. 3.
    Schutz B, Ruppert AL, Strobel O, Lazarus M, Urade Y et al. 2019. Distribution pattern and molecular signature of cholinergic tuft cells in human gastro-intestinal and pancreatic-biliary tract. Sci. Rep. 9:17466
    [Google Scholar]
  4. 4.
    Zheng X, Tizzano M, Redding K, He J, Peng X et al. 2019. Gingival solitary chemosensory cells are immune sentinels for periodontitis. Nat. Commun. 10:4496
    [Google Scholar]
  5. 5.
    Bezencon C, Furholz A, Raymond F, Mansourian R, Metairon S et al. 2008. Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J. Comp. Neurol. 509:514–25
    [Google Scholar]
  6. 6.
    Sukumaran SK, Lewandowski BC, Qin Y, Kotha R, Bachmanov AA, Margolskee RF. 2017. Whole transcriptome profiling of taste bud cells. Sci. Rep. 7:7595
    [Google Scholar]
  7. 7.
    Roper SD, Chaudhari N. 2017. Taste buds: cells, signals and synapses. Nat. Rev. Neurosci. 18:485–97
    [Google Scholar]
  8. 8.
    Billipp TE, Nadjsombati MS, von Moltke J. 2021. Tuning tuft cells: New ligands and effector functions reveal tissue-specific function. Curr. Opin. Immunol. 68:98–106
    [Google Scholar]
  9. 9.
    Schneider C, O'Leary CE, Locksley RM. 2019. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19:584–93
    [Google Scholar]
  10. 10.
    Saqui-Salces M, Keeley TM, Grosse AS, Qiao XT, El-Zaatari M et al. 2011. Gastric tuft cells express DCLK1 and are expanded in hyperplasia. Histochem. Cell Biol. 136:191–204
    [Google Scholar]
  11. 11.
    Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, Lee J, Nussbaum JC et al. 2018. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19:1093–99
    [Google Scholar]
  12. 12.
    Schneider C, O'Leary CE, von Moltke J, Liang HE, Ang QY et al. 2018. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174:271–84.e14
    [Google Scholar]
  13. 13.
    von Moltke J, Ji M, Liang HE, Locksley RM 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–25
    [Google Scholar]
  14. 14.
    Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I et al. 2016. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226–30
    [Google Scholar]
  15. 15.
    Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV et al. 2016. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–33
    [Google Scholar]
  16. 16.
    Luo XC, Chen ZH, Xue JB, Zhao DX, Lu C et al. 2019. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. PNAS 16:125564–69
    [Google Scholar]
  17. 17.
    Nadjsombati MS, McGinty JW, Lyons-Cohen MR, Jaffe JB, DiPeso L et al. 2018. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49:33–41.e7
    [Google Scholar]
  18. 18.
    Lei W, Ren W, Ohmoto M, Urban JF Jr., Matsumoto I et al. 2018. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. PNAS 115:215552–57
    [Google Scholar]
  19. 19.
    Howitt MR, Cao YG, Gologorsky MB, Li JA, Haber AL et al. 2020. The taste receptor TAS1R3 regulates small intestinal tuft cell homeostasis. Immunohorizons 4:23–32
    [Google Scholar]
  20. 20.
    McGinty JW, Ting HA, Billipp TE, Nadjsombati MS, Khan DM et al. 2020. Tuft-cell-derived leukotrienes drive rapid anti-helminth immunity in the small intestine but are dispensable for anti-protist immunity. Immunity 52:528–41.e7
    [Google Scholar]
  21. 21.
    Xiong Z, Zhu X, Geng J, Xu Y, Wu R et al. 2022. Intestinal Tuft-2 cells exert antimicrobial immunity via sensing bacterial metabolite N-undecanoylglycine. Immunity 55:686–700.e7
    [Google Scholar]
  22. 22.
    Oyesola OO, Shanahan MT, Kanke M, Mooney BM, Webb LM et al. 2021. PGD2 and CRTH2 counteract Type 2 cytokine-elicited intestinal epithelial responses during helminth infection. J. Exp. Med. 218:9e20202178
    [Google Scholar]
  23. 23.
    DelGiorno KE, Chung CY, Vavinskaya V, Maurer HC, Novak SW et al. 2020. Tuft cells inhibit pancreatic tumorigenesis in mice by producing prostaglandin D2. Gastroenterology 159:1866–81.e8
    [Google Scholar]
  24. 24.
    Keshavarz M, Faraj Tabrizi S, Ruppert AL, Pfeil U, Schreiber Y et al. 2022. Cysteinyl leukotrienes and acetylcholine are biliary tuft cell cotransmitters. Sci. Immunol. 7:69eabf6734
    [Google Scholar]
  25. 25.
    Fu Z, Dean JW, Xiong L, Dougherty MW, Oliff KN et al. 2021. Mitochondrial transcription factor A in RORγt+ lymphocytes regulate small intestine homeostasis and metabolism. Nat. Commun. 12:4462
    [Google Scholar]
  26. 26.
    Chang CY, Wang J, Zhao Y, Liu J, Yang X et al. 2021. Tumor suppressor p53 regulates intestinal type 2 immunity. Nat. Commun. 12:3371
    [Google Scholar]
  27. 27.
    Hood R, Chen YH, Goldsmith JR. 2021. TNFAIP8 regulates intestinal epithelial cell differentiation and may alter terminal differentiation of secretory progenitors. Cells 10:4871
    [Google Scholar]
  28. 28.
    González-Loyola A, Bernier-Latmani J, Roci I, Wyss T, Langer Jet al 2022. c-MAF coordinates enterocyte zonation and nutrient uptake transcriptional programs. J. Exp. Med 21912e20212418
  29. 29.
    Kotas ME, Mroz NM, Koga S, Liang HE, Schroeder AW et al. 2021. CISH constrains the tuft-ILC2 circuit to set epithelial and immune tone. Mucosal Immunol. 14:1295–305
    [Google Scholar]
  30. 30.
    Desai P, Janova H, White JP, Reynoso GV, Hickman HD et al. 2021. Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell 184:1214–31.e16
    [Google Scholar]
  31. 31.
    Inaba A, Kumaki S, Arinaga A, Tanaka K, Aihara E et al. 2021. Generation of intestinal chemosensory cells from nonhuman primate organoids. Biochem. Biophys. Res. Commun. 536:20–25
    [Google Scholar]
  32. 32.
    Huh WJ, Roland JT, Asai M, Kaji I. 2020. Distribution of duodenal tuft cells is altered in pediatric patients with acute and chronic enteropathy. Biomed. Res. 41:113–18
    [Google Scholar]
  33. 33.
    Banerjee A, Herring CA, Chen B, Kim H, Simmons AJ et al. 2020. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation. Gastroenterology 159:2101–15.e5
    [Google Scholar]
  34. 34.
    Aigbologa J, Connolly M, Buckley JM, O'Malley D. 2020. Mucosal tuft cell density is increased in diarrhea-predominant irritable bowel syndrome colonic biopsies. Front. Psychiatry 11:436
    [Google Scholar]
  35. 35.
    Bankova LG, Dwyer DF, Yoshimoto E, Ualiyeva S, McGinty JW et al. 2018. The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation. Sci. Immunol. 3:28eaat9453
    [Google Scholar]
  36. 36.
    Ualiyeva S, Hallen N, Kanaoka Y, Ledderose C, Matsumoto I et al. 2020. Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Sci. Immunol.43eaax7224
    [Google Scholar]
  37. 37.
    Ualiyeva S, Lemire E, Aviles EC, Wong C, Boyd AA et al. 2021. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. Sci. Immunol. 6:eabj0474
    [Google Scholar]
  38. 38.
    Ricardo-Gonzalez RR, Schneider C, Liao C, Lee J, Liang HE, Locksley RM. 2020. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. J. Exp. Med. 217:4e20191172
    [Google Scholar]
  39. 39.
    Miller MM, Patel PS, Bao K, Danhorn T, O'Connor BP, Reinhardt RL. 2020. BATF acts as an essential regulator of IL-25-responsive migratory ILC2 cell fate and function. Sci. Immunol. 5:43eaay3994
    [Google Scholar]
  40. 40.
    Kotas ME, Moore CM, Gurrola JG, Pletcher SD, Goldberg AN et al. 2022. IL-13-programmed airway tuft cells produce PGE2, which promotes CFTR-dependent mucociliary function. JCI Insight 7:13e159832
    [Google Scholar]
  41. 41.
    Saunders CJ, Christensen M, Finger TE, Tizzano M. 2014. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. PNAS 111:6075–80
    [Google Scholar]
  42. 42.
    Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP et al. 2010. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. PNAS 107:3210–15
    [Google Scholar]
  43. 43.
    Hollenhorst MI, Nandigama R, Evers SB, Gamayun I, Abdel Wadood N et al. 2022. Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection. J. Clin. Investig. 132:e150951
    [Google Scholar]
  44. 44.
    Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T et al. 2011. Cholinergic chemosensory cells in the trachea regulate breathing. PNAS 108:9478–83
    [Google Scholar]
  45. 45.
    Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B et al. 2014. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Investig. 124:1393–405
    [Google Scholar]
  46. 46.
    Lee RJ, Hariri BM, McMahon DB, Chen B, Doghramji L et al. 2017. Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci. Signal. 10:495eaam7703
    [Google Scholar]
  47. 47.
    Hollenhorst MI, Jurastow I, Nandigama R, Appenzeller S, Li L et al. 2020. Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling. FASEB J. 34:316–32
    [Google Scholar]
  48. 48.
    Perniss A, Liu S, Boonen B, Keshavarz M, Ruppert AL et al. 2020. Chemosensory cell-derived acetylcholine drives tracheal mucociliary clearance in response to virulence-associated formyl peptides. Immunity 52:683–99.e11
    [Google Scholar]
  49. 49.
    Weiss E, Kretschmer D. 2018. Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol. 39:815–29
    [Google Scholar]
  50. 50.
    Meyer AR, Engevik AC, Madorsky T, Belmont E, Stier MT et al. 2020. Group 2 innate lymphoid cells coordinate damage response in the stomach. Gastroenterology 159:2077–91.e8
    [Google Scholar]
  51. 51.
    O'Leary CE, Sbierski-Kind J, Kotas ME, Wagner JC, Liang HE et al. 2022. Bile acid-sensitive tuft cells regulate biliary neutrophil influx. Sci Immunol. 7:69eabj1080
    [Google Scholar]
  52. 52.
    Perniss A, Schmidt P, Soultanova A, Papadakis T, Dahlke K et al. 2021. Development of epithelial cholinergic chemosensory cells of the urethra and trachea of mice. Cell Tissue Res. 385:21–35
    [Google Scholar]
  53. 53.
    Deckmann K, Kummer W. 2016. Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochem. Cell Biol. 146:673–83
    [Google Scholar]
  54. 54.
    Hoffman MT, Kemp SB, Salas-Escabillas DJ, Zhang Y, Steele NG et al. 2021. The gustatory sensory G-protein GNAT3 suppresses pancreatic cancer progression in mice. Cell. Mol. Gastroenterol. Hepatol. 11:349–69
    [Google Scholar]
  55. 55.
    Klein L, Kyewski B, Allen PM, Hogquist KA. 2014. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat. Rev. Immunol. 14:377–91
    [Google Scholar]
  56. 56.
    Panneck AR, Rafiq A, Schutz B, Soultanova A, Deckmann K et al. 2014. Cholinergic epithelial cell with chemosensory traits in murine thymic medulla. Cell Tissue Res. 358:737–48
    [Google Scholar]
  57. 57.
    Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M et al. 2018. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559:622–26
    [Google Scholar]
  58. 58.
    Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR et al. 2018. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature 559:627–31
    [Google Scholar]
  59. 59.
    Lucas B, White AJ, Cosway EJ, Parnell SM, James KD et al. 2020. Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells. Nat. Commun. 11:2198
    [Google Scholar]
  60. 60.
    Lopes N, Boucherit N, Santamaria JC, Provin N, Charaix J et al. 2022. Thymocytes trigger self-antigen-controlling pathways in immature medullary thymic epithelial stages. eLife 11:e69982
    [Google Scholar]
  61. 61.
    Matsumoto I, Ohmoto M, Narukawa M, Yoshihara Y, Abe K 2011. Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat. Neurosci. 14:685–87
    [Google Scholar]
  62. 62.
    Feng P, Zhao H, Chai J, Huang L, Wang H. 2012. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells. PLOS ONE 7:e43140
    [Google Scholar]
  63. 63.
    Feng P, Chai J, Zhou M, Simon N, Huang L, Wang H. 2014. Interleukin-10 is produced by a specific subset of taste receptor cells and critical for maintaining structural integrity of mouse taste buds. J. Neurosci. 34:2689–701
    [Google Scholar]
  64. 64.
    Lemons K, Fu Z, Aoude I, Ogura T, Sun J et al. 2017. Lack of TRPM5-expressing microvillous cells in mouse main olfactory epithelium leads to impaired odor-evoked responses and olfactory-guided behavior in a challenging chemical environment. eNeuro 4:3ENEURO.0135–17 2017.
    [Google Scholar]
  65. 65.
    Yamaguchi T, Yamashita J, Ohmoto M, Aoude I, Ogura T et al. 2014. Skn-1a/Pou2f3 is required for the generation of Trpm5-expressing microvillous cells in the mouse main olfactory epithelium. BMC Neurosci. 15:13
    [Google Scholar]
  66. 66.
    Ogura T, Krosnowski K, Zhang L, Bekkerman M, Lin W. 2010. Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells. PLOS ONE 5:e11924
    [Google Scholar]
  67. 67.
    Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G et al. 2011. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192:767–80
    [Google Scholar]
  68. 68.
    Herring CA, Banerjee A, McKinley ET, Simmons AJ, Ping J et al. 2018. Unsupervised trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst. 6:37–51.e9
    [Google Scholar]
  69. 69.
    Shroyer NF, Helmrath MA, Wang VY, Antalffy B, Henning SJ, Zoghbi HY. 2007. Intestine-specific ablation of Mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132:2478–88
    [Google Scholar]
  70. 70.
    Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. 2001. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294:2155–58
    [Google Scholar]
  71. 71.
    Bjerknes M, Khandanpour C, Moroy T, Fujiyama T, Hoshino M et al. 2012. Origin of the brush cell lineage in the mouse intestinal epithelium. Dev. Biol. 362:194–218
    [Google Scholar]
  72. 72.
    Gracz AD, Samsa LA, Fordham MJ, Trotier DC, Zwarycz B et al. 2018. Sox4 promotes Atoh1-independent intestinal secretory differentiation toward tuft and enteroendocrine fates. Gastroenterology 155:51508–23.e10
    [Google Scholar]
  73. 73.
    Zhang X, Bandyopadhyay S, Araujo LP, Tong K, Flores J et al. 2020. Elevating EGFR-MAPK program by a nonconventional Cdc42 enhances intestinal epithelial survival and regeneration. JCI Insight 5:16e135923
    [Google Scholar]
  74. 74.
    Long T, Abbasi N, Hernandez JE, Li Y, Sayed IM et al. 2022. RNA binding protein DDX5 directs tuft cell specification and function to regulate microbial repertoire and disease susceptibility in the intestine. Gut 71:91790–1802
    [Google Scholar]
  75. 75.
    Middelhoff M, Nienhuser H, Valenti G, Maurer HC, Hayakawa Y et al. 2020. Prox1-positive cells monitor and sustain the murine intestinal epithelial cholinergic niche. Nat. Commun. 11:111
    [Google Scholar]
  76. 76.
    Lindholm HT, Parmar N, Drurey C, Campillo Poveda M, Vornewald PM et al. 2022. BMP signaling in the intestinal epithelium drives a critical feedback loop to restrain IL-13-driven tuft cell hyperplasia. Sci. Immunol. 7:eabl6543
    [Google Scholar]
  77. 77.
    Lin X, Gaudino SJ, Jang KK, Bahadur T, Singh A et al. 2022. IL-17RA-signaling in Lgr5+ intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity 55:237–53.e8
    [Google Scholar]
  78. 78.
    Saunders CJ, Reynolds SD, Finger TE. 2013. Chemosensory brush cells of the trachea. A stable population in a dynamic epithelium. Am. J. Respir. Cell Mol. Biol. 49:190–96
    [Google Scholar]
  79. 79.
    Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B et al. 2018. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319–24
    [Google Scholar]
  80. 80.
    Zaragosi LE, Deprez M, Barbry P. 2020. Using single-cell RNA sequencing to unravel cell lineage relationships in the respiratory tract. Biochem. Soc. Trans. 48:327–36
    [Google Scholar]
  81. 81.
    Deprez M, Zaragosi LE, Truchi M, Becavin C, Ruiz Garcia S et al. 2020. A single-cell atlas of the human healthy airways. Am. J. Respir. Crit. Care Med. 202:1636–45
    [Google Scholar]
  82. 82.
    Ruiz Garcia S, Deprez M, Lebrigand K, Cavard A, Paquet A et al. 2019. Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development 146:20dev177428
    [Google Scholar]
  83. 83.
    Fletcher RB, Das D, Gadye L, Street KN, Baudhuin A et al. 2017. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20:817–30.e8
    [Google Scholar]
  84. 84.
    Lin B, Coleman JH, Peterson JN, Zunitch MJ, Jang W et al. 2017. Injury induces endogenous reprogramming and dedifferentiation of neuronal progenitors to multipotency. Cell Stem Cell 21:761–74.e5
    [Google Scholar]
  85. 85.
    Gadye L, Das D, Sanchez MA, Street K, Baudhuin A et al. 2017. Injury activates transient olfactory stem cell states with diverse lineage capacities. Cell Stem Cell 21:775–90.e9
    [Google Scholar]
  86. 86.
    Bautista JL, Cramer NT, Miller CN, Chavez J, Berrios DI et al. 2021. Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nat. Commun. 12:1096
    [Google Scholar]
  87. 87.
    Wang HX, Pan W, Zheng L, Zhong XP, Tan L et al. 2019. Thymic epithelial cells contribute to thymopoiesis and T cell development. Front. Immunol. 10:3099
    [Google Scholar]
  88. 88.
    Gao H, Cao M, Deng K, Yang Y, Song J et al. 2022. The lineage differentiation and dynamic heterogeneity of thymic epithelial cells during thymus organogenesis. Front. Immunol. 13:805451
    [Google Scholar]
  89. 89.
    Mino N, Muro R, Ota A, Nitta S, Lefebvre V et al. 2022. The transcription factor Sox4 is required for thymic tuft cell development. Int. Immunol. 34:45–52
    [Google Scholar]
  90. 90.
    Spence JR, Lange AW, Lin SC, Kaestner KH, Lowy AM et al. 2009. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev. Cell 17:62–74
    [Google Scholar]
  91. 91.
    Drurey C, Lindholm HT, Coakley G, Poveda MC, Loser S et al. 2022. Intestinal epithelial tuft cell induction is negated by a murine helminth and its secreted products. J. Exp. Med. 219:1e20211140
    [Google Scholar]
  92. 92.
    Kohanski MA, Workman AD, Patel NN, Hung LY, Shtraks JP et al. 2018. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 142:460–69.e7
    [Google Scholar]
  93. 93.
    Patel NN, Kohanski MA, Maina IW, Triantafillou V, Workman AD et al. 2018. Solitary chemosensory cells producing interleukin-25 and group-2 innate lymphoid cells are enriched in chronic rhinosinusitis with nasal polyps. Int. Forum. Allergy Rhinol. 8:900–6
    [Google Scholar]
  94. 94.
    DelGiorno KE, Naeem RF, Fang L, Chung CY, Ramos C et al. 2020. Tuft cell formation reflects epithelial plasticity in pancreatic injury: implications for modeling human pancreatitis. Front. Physiol. 11:88
    [Google Scholar]
  95. 95.
    Ma Z, Lytle NK, Chen B, Jyotsana N, Novak SW et al. 2022. Single-cell transcriptomics reveals a conserved metaplasia program in pancreatic injury. Gastroenterology 162:604–20.e20
    [Google Scholar]
  96. 96.
    Tosti L, Hang Y, Debnath O, Tiesmeyer S, Trefzer T et al. 2021. Single-nucleus and in situ RNA-sequencing reveal cell topographies in the human pancreas. Gastroenterology 160:1330–44.e11
    [Google Scholar]
  97. 97.
    Bailey JM, Alsina J, Rasheed ZA, McAllister FM, Fu YY et al. 2014. DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology 146:245–56
    [Google Scholar]
  98. 98.
    DelGiorno KE, Hall JC, Takeuchi KK, Pan FC, Halbrook CJ et al. 2014. Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology 146:233–44.e5
    [Google Scholar]
  99. 99.
    Mutoh H, Sashikawa M, Sakamoto H, Tateno T. 2014. Cyclooxygenase 2 in gastric carcinoma is expressed in doublecortin- and CaM kinase-like-1-positive tuft cells. Gut Liver 8:508–18
    [Google Scholar]
  100. 100.
    Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R et al. 2017. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31:21–34
    [Google Scholar]
  101. 101.
    O'Keefe RN, Carli ALE, Baloyan D, Asfahar-Sterle S, Eissmann MF et al. 2022. Inhibition of the tuft cell/ILC2 axis reduces gastric tumor development in mice. bioRxiv 2022.02.16.480779. https://doi.org/10.1101/2022.02.16.480779
    [Crossref]
  102. 102.
    Zhang B, Bie Q, Wu P, Zhang J, You B et al. 2018. PGD2/PTGDR2 signaling restricts the self-renewal and tumorigenesis of gastric cancer. Stem Cells 36:990–1003
    [Google Scholar]
  103. 103.
    Kunze B, Middelhoff M, Maurer HC, Agibalova T, Anand A et al. 2021. Notch signaling drives development of Barrett's metaplasia from Dclk1-positive epithelial tuft cells in the murine gastric mucosa. Sci. Rep. 11:4509
    [Google Scholar]
  104. 104.
    Fang Y, Li W, Chen X 2021. P63 deficiency and CDX2 overexpression lead to Barrett's-like metaplasia in mouse esophageal epithelium. Dig. Dis. Sci. 66:4263–73
    [Google Scholar]
  105. 105.
    Barr J, Gentile ME, Lee S, Kotas ME, de Mello Costa MF et al. 2022. Injury-induced pulmonary tuft cells are heterogenous, arise independent of key Type 2 cytokines, and are dispensable for dysplastic repair. bioRxiv 2022.03.10.483754. https://doi.org/10.1101/2022.03.10.483754
    [Crossref]
  106. 106.
    Melms JC, Biermann J, Huang H, Wang Y, Nair A et al. 2021. A molecular single-cell lung atlas of lethal COVID-19. Nature 595:114–19
    [Google Scholar]
  107. 107.
    Rane CK, Jackson SR, Pastore CF, Zhao G, Weiner AI et al. 2019. Development of solitary chemosensory cells in the distal lung after severe influenza injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 316:L1141–49
    [Google Scholar]
  108. 108.
    Huang H, Fang Y, Jiang M, Zhang Y, Biermann Jet al 2022. Contribution of Trp63CreERT2-labeled cells to alveolar regeneration is independent of tuft cells. eLife 11e78217
  109. 109.
    Roach SN, Fiege JK, Shepherd FK, Wiggen TD, Hunter RC, Langlois RA. 2022. Respiratory influenza virus infection causes dynamic tuft cell and innate lymphoid cell changes in the small intestine. J. Virol. 96:9e0035222
    [Google Scholar]
  110. 110.
    Bintz J, Abuelafia AM, Gerbe F, Baudoin E, Auphan-Anezin N et al. 2020. Expression of POU2F3 transcription factor control inflammation, immunological recruitment and metastasis of pancreatic cancer in mice. Biology 9:1341
    [Google Scholar]
  111. 111.
    Yamada Y, Simon-Keller K, Belharazem-Vitacolonnna D, Bohnenberger H, Kriegsmann M et al. 2021. A tuft cell-like signature is highly prevalent in thymic squamous cell carcinoma and delineates new molecular subsets among the major lung cancer histotypes. J. Thorac. Oncol. 16:1003–16
    [Google Scholar]
  112. 112.
    Yamada Y, Sugimoto A, Hoki M, Yoshizawa A, Hamaji M et al. 2022. POU2F3 beyond thymic carcinomas: Expression across the spectrum of thymomas hints to medullary differentiation in type A thymoma. Virchows Arch 480:4843–51
    [Google Scholar]
  113. 113.
    Sugimoto A, Yamada Y, Fujimoto M, Minamiguchi S, Sato T et al. 2021. A multilocular thymic cyst associated with mediastinal seminoma: evidence for its medullary epithelial origin highlighted by POU2F3-positive thymic tuft cells and concomitant myoid cell proliferation. Virchows Arch. 479:215–20
    [Google Scholar]
  114. 114.
    Yuan X, Huang L, Luo W, Zhao Y, Nashan B et al. 2021. Diagnostic and prognostic significances of SOX9 in thymic epithelial tumor. Front. Oncol. 11:708735
    [Google Scholar]
  115. 115.
    Huang YH, Klingbeil O, He XY, Wu XS, Arun G et al. 2018. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev. 32:915–28
    [Google Scholar]
  116. 116.
    Megyesfalvi Z, Barany N, Lantos A, Valko Z, Pipek O et al. 2022. Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small cell lung cancer: an international multicenter study. J. Pathol. 257:5674–86
    [Google Scholar]
  117. 117.
    Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y et al. 2013. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat. Genet. 45:98–103
    [Google Scholar]
  118. 118.
    Chandrakesan P, Weygant N, May R, Qu D, Chinthalapally HR et al. 2014. DCLK1 facilitates intestinal tumor growth via enhancing pluripotency and epithelial mesenchymal transition. Oncotarget 5:9269–80
    [Google Scholar]
  119. 119.
    Broner EC, Trujillo JA, Korzinkin M, Subbannayya T, Agrawal N et al. 2021. Doublecortin-like kinase 1 (DCLK1) is a novel NOTCH pathway signaling regulator in head and neck squamous cell carcinoma. Front. Oncol. 11:677051
    [Google Scholar]
  120. 120.
    Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS et al. 2017. Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell 21:78–90.e6
    [Google Scholar]
  121. 121.
    Chandrakesan P, Panneerselvam J, Qu D, Weygant N, May R et al. 2016. Regulatory roles of Dclk1 in epithelial mesenchymal transition and cancer stem cells. J. Carcinog. Mutagen. 7:2257
    [Google Scholar]
  122. 122.
    Vijai M, Baba M, Ramalingam S, Thiyagaraj A. 2021. DCLK1 and its interaction partners: an effective therapeutic target for colorectal cancer. Oncol. Lett. 22:850
    [Google Scholar]
  123. 123.
    Nishio K, Kimura K, Amano R, Nakata B, Yamazoe S et al. 2017. Doublecortin and CaM kinase-like-1 as an independent prognostic factor in patients with resected pancreatic carcinoma. World J. Gastroenterol. 23:5764–72
    [Google Scholar]
  124. 124.
    Westphalen CB, Quante M, Wang TC. 2017. Functional implication of Dclk1 and Dclk1-expressing cells in cancer. Small GTPases 8:164–71
    [Google Scholar]
  125. 125.
    Goto N, Fukuda A, Yamaga Y, Yoshikawa T, Maruno T et al. 2019. Lineage tracing and targeting of IL17RB+ tuft cell-like human colorectal cancer stem cells. PNAS 116:12996–3005
    [Google Scholar]
  126. 126.
    Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ et al. 2014. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J. Clin. Investig. 124:1283–95
    [Google Scholar]
  127. 127.
    Ge Y, Gomez NC, Adam RC, Nikolova M, Yang H et al. 2017. Stem cell lineage infidelity drives wound repair and cancer. Cell 169:636–50.e14
    [Google Scholar]
  128. 128.
    Higa T, Okita Y, Matsumoto A, Nakayama S, Oka T et al. 2022. Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia in the intestinal epithelium. Nat. Commun. 13:1500
    [Google Scholar]
  129. 129.
    Goldfarbmuren KC, Jackson ND, Sajuthi SP, Dyjack N, Li KS et al. 2020. Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. Nat. Commun. 11:2485
    [Google Scholar]
  130. 130.
    Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K et al. 2017. A single-cell survey of the small intestinal epithelium. Nature 551:333–39
    [Google Scholar]
  131. 131.
    Moor AE, Harnik Y, Ben-Moshe S, Massasa EE, Rozenberg M et al. 2018. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175:1156–67.e15
    [Google Scholar]
  132. 132.
    Manco R, Averbukh I, Porat Z, Bahar Halpern K, Amit I, Itzkovitz S 2021. Clump sequencing exposes the spatial expression programs of intestinal secretory cells. Nat. Commun. 12:3074
    [Google Scholar]
  133. 133.
    Grunddal KV, Tonack S, Egerod KL, Thompson JJ, Petersen N et al. 2021. Adhesion receptor ADGRG2/GPR64 is in the GI-tract selectively expressed in mature intestinal tuft cells. Mol. Metab. 51:101231
    [Google Scholar]
  134. 134.
    Kiela PR, Ghishan FK. 2016. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 30:145–59
    [Google Scholar]
  135. 135.
    Gehart H, van Es JH, Hamer K, Beumer J, Kretzschmar K et al. 2019. Identification of enteroendocrine regulators by real-time single-cell differentiation mapping. Cell 176:1158–73.e16
    [Google Scholar]
  136. 136.
    Zhu G, Hu J, Xi R. 2021. The cellular niche for intestinal stem cells: a team effort. Cell Regen. 10:1
    [Google Scholar]
  137. 137.
    Hidalgo A, Casanova-Acebes M. 2021. Dimensions of neutrophil life and fate. Semin. Immunol. 57:101506
    [Google Scholar]
  138. 138.
    van Es JH, Wiebrands K, Lopez-Iglesias C, van de Wetering M, Zeinstra L et al. 2019. Enteroendocrine and tuft cells support Lgr5 stem cells on Paneth cell depletion. PNAS 116:26599–605
    [Google Scholar]
  139. 139.
    Wilen CB, Lee S, Hsieh LL, Orchard RC, Desai C et al. 2018. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360:204–8
    [Google Scholar]
  140. 140.
    Orchard RC, Wilen CB, Doench JG, Baldridge MT, McCune BT et al. 2016. Discovery of a proteinaceous cellular receptor for a norovirus. Science 353:933–36
    [Google Scholar]
  141. 141.
    Bomidi C, Robertson M, Coarfa C, Estes MK, Blutt SE. 2021. Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. PNAS 118:e2112814118
    [Google Scholar]
  142. 142.
    Lee S, Liu H, Wilen CB, Sychev ZE, Desai C et al. 2019. A secreted viral nonstructural protein determines intestinal norovirus pathogenesis. Cell Host Microbe 25:845–57.e5
    [Google Scholar]
  143. 143.
    Graziano VR, Alfajaro MM, Schmitz CO, Filler RB, Strine MS et al. 2021. CD300lf conditional knockout mouse reveals strain-specific cellular tropism of murine norovirus. J. Virol. 95:e01652–20
    [Google Scholar]
  144. 144.
    Graziano VR, Walker FC, Kennedy EA, Wei J, Ettayebi K et al. 2020. CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus. PLOS Pathog. 16:e1008242
    [Google Scholar]
  145. 145.
    Nicod LP. 2005. Lung defences: an overview. Eur. Respir. Rev. 14:45–50
    [Google Scholar]
  146. 146.
    Lin W, Ezekwe EA Jr., Zhao Z, Liman ER, Restrepo D. 2008. TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci. 9:114
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042320-112212
Loading
/content/journals/10.1146/annurev-pathol-042320-112212
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error