Skip to main content

Advertisement

Log in

A comparative study of IL-33 and its receptor ST2 in a C57BL/6 J mouse model of pulmonary Cryptococcus neoformans infection

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

It has been reported that IL-33 receptor ST2 deficiency mitigates Cryptococcus neoformans (C. neoformans) pulmonary infection in BALB/c mice. IL-33 may modulate immune responses in ST2-dependent and ST2-independent manners. The host genetic background (i.e., BALB/c, C57BL/6 J) influences immune responses against C. neoformans. In the present study, we aimed to explore the roles of IL-33 and ST2 in pulmonary C. neoformans-infected mice on a C57BL/6 J genetic background. C. neoformans infection increased IL-33 expression in lung tissues. IL-33 deficiency but not ST2 deficiency significantly extended the survival time of C. neoformans-infected mice. In contrast, either IL-33 or ST2 deficiency reduced fungal burdens in lung, spleen and brain tissues from the mice following C. neoformans intratracheal inoculation. Similarly, inflammatory responses in the lung tissues were more pronounced in both the IL-33−/− and ST2−/− infected mice. However, mucus production was decreased in IL-33−/− infected mice alone, and the level of IL-5 in bronchoalveolar lavage fluid (BALF) was substantially decreased in the IL-33−/− infected mice but not ST2−/− infected mice. Moreover, IL-33 deficiency but not ST2 deficiency increased iNOS-positive macrophages. At the early stage of infection, the reduced pulmonary fungal burden in the IL-33−/− and ST2−/− mice was accompanied by increased neutrophil infiltration. Collectively, IL-33 regulated pulmonary C. neoformans infection in an ST2-dependent and ST2-independent manner in C57BL/6 J mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Zhang Y, Wang F, Tompkins KC, McNamara A, Jain AV, Moore BB et al (2009) Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. Am J Pathol 175(6):2489–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jain AV, Zhang Y, Fields WB, McNamara DA, Choe MY, Chen GH et al (2009) Th2 but not Th1 immune bias results in altered lung functions in a murine model of pulmonary Cryptococcus neoformans infection. Infect Immun 77(12):5389–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen GH, McNamara DA, Hernandez Y, Huffnagle GB, Toews GB, Olszewski MA (2008) Inheritance of immune polarization patterns is linked to resistance versus susceptibility to Cryptococcus neoformans in a mouse model. Infect Immun 76(6):2379–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heyen L, Muller U, Siegemund S, Schulze B, Protschka M, Alber G et al (2016) Lung epithelium is the major source of IL-33 and is regulated by IL-33-dependent and IL-33-independent mechanisms in pulmonary cryptococcosis. Pathog Dis 74(7):ftw086

    Article  PubMed  Google Scholar 

  5. Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS, Zhang L et al (2014) IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol 134(6):1422–32.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Flaczyk A, Duerr CU, Shourian M, Lafferty EI, Fritz JH, Qureshi ST (2013) IL-33 signaling regulates innate and adaptive immunity to Cryptococcus neoformans. J Immunol 191(5):2503–2513

    Article  CAS  PubMed  Google Scholar 

  7. Piehler D, Grahnert A, Eschke M, Richter T, Kohler G, Stenzel W et al (2013) T1/ST2 promotes T helper 2 cell activation and polyfunctionality in bronchopulmonary mycosis. Mucosal Immunol 6(2):405–414

    Article  CAS  PubMed  Google Scholar 

  8. Piehler D, Eschke M, Schulze B, Protschka M, Muller U, Grahnert A et al (2016) The IL-33 receptor (ST2) regulates early IL-13 production in fungus-induced allergic airway inflammation. Mucosal Immunol 9(4):937–949

    Article  CAS  PubMed  Google Scholar 

  9. Alvarez F, Istomine R, Shourian M, Pavey N, Al-Aubodah TA, Qureshi S et al (2019) The alarmins IL-1 and IL-33 differentially regulate the functional specialisation of Foxp3(+) regulatory T cells during mucosal inflammation. Mucosal Immunol 12(3):746–760

    Article  CAS  PubMed  Google Scholar 

  10. Lefrançais E, Duval A, Mirey E, Roga S, Espinosa E, Cayrol C et al (2014) Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci USA 111(43):15502–15507

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luzina IG, Pickering EM, Kopach P, Kang PH, Lockatell V, Todd NW et al (2012) Full-length IL-33 promotes inflammation but not Th2 response in vivo in an ST2-independent fashion. J Immunol (Baltimore, Md: 1950). 189(1):403–410

    Article  CAS  Google Scholar 

  12. Wang Z, Ji N, Chen Z, Sun Z, Wu C, Yu W et al (2020) MiR-1165-3p suppresses Th2 differentiation via targeting IL-13 and PPM1A in a mouse model of allergic airway inflammation. Allergy, Asthma Immunol Res 12(5):859–876

    Article  CAS  PubMed  Google Scholar 

  13. Osterholzer JJ, Chen GH, Olszewski MA, Zhang YM, Curtis JL, Huffnagle GB et al (2011) Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection. Am J Pathol 178(1):198–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ubags NDJ, Suratt BT (2018) Isolation and characterization of mouse neutrophils. Methods Mol Biol (Clifton, NJ) 1809:45–57

    Article  CAS  Google Scholar 

  15. Sun D, Zhang M, Liu G, Wu H, Zhu X, Zhou H et al (2016) Real-time imaging of interactions of neutrophils with Cryptococcus neoformans demonstrates a crucial role of complement C5a–C5aR signaling. Infect Immun 84(1):216–229

    Article  CAS  PubMed  Google Scholar 

  16. Leopold Wager CM, Hole CR, Wozniak KL, Wormley FL Jr (2016) Cryptococcus and phagocytes: complex interactions that influence disease outcome. Front Microbiol 7:105

    Article  PubMed  PubMed Central  Google Scholar 

  17. Olszewski MA, Zhang Y, Huffnagle GB (2010) Mechanisms of cryptococcal virulence and persistence. Future Microbiol 5(8):1269–1288

    Article  CAS  PubMed  Google Scholar 

  18. Zheng CF, Ma LL, Jones GJ, Gill MJ, Krensky AM, Kubes P et al (2007) Cytotoxic CD4+ T cells use granulysin to kill Cryptococcus neoformans, and activation of this pathway is defective in HIV patients. Blood 109(5):2049–2057

    Article  CAS  PubMed  Google Scholar 

  19. Osterholzer JJ, Surana R, Milam JE, Montano GT, Chen GH, Sonstein J et al (2009) Cryptococcal urease promotes the accumulation of immature dendritic cells and a non-protective T2 immune response within the lung. Am J Pathol 174(3):932–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Griesenauer B, Paczesny S (2017) The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol 8:475

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cayrol C, Girard JP (2018) Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev 281(1):154–168

    Article  CAS  PubMed  Google Scholar 

  22. Fanny M, Nascimento M, Baron L, Schricke C, Maillet I, Akbal M et al (2018) The IL-33 receptor ST2 regulates pulmonary inflammation and fibrosis to bleomycin. Front Immunol 9:1476

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nelson MP, Christmann BS, Werner JL, Metz AE, Trevor JL, Lowell CA et al (2011) IL-33 and M2a alveolar macrophages promote lung defense against the atypical fungal pathogen Pneumocystis murina. J Immunol (Baltimore, Md: 1950). 186(4):2372–2381

    Article  CAS  Google Scholar 

  24. Sun D, Zhang M, Liu G, Wu H, Li C, Zhou H et al (2016) Intravascular clearance of disseminating Cryptococcus neoformans in the brain can be improved by enhancing neutrophil recruitment in mice. Eur J Immunol 46(7):1704–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alves-Filho JC, Sônego F, Souto FO, Freitas A, Verri WA Jr, Auxiliadora-Martins M et al (2010) Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med 16(6):708–712

    Article  CAS  PubMed  Google Scholar 

  26. Lan F, Yuan B, Liu T, Luo X, Huang P, Liu Y et al (2016) Interleukin-33 facilitates neutrophil recruitment and bacterial clearance in S. aureus-caused peritonitis. Mol Immunol 72:74–80

    Article  CAS  PubMed  Google Scholar 

  27. Oguma T, Asano K, Tomomatsu K, Kodama M, Fukunaga K, Shiomi T et al (2011) Induction of mucin and MUC5AC expression by the protease activity of Aspergillus fumigatus in airway epithelial cells. J Immunol (Baltimore, Md: 1950). 187(2):999–1005

    Article  CAS  Google Scholar 

  28. Southam DS, Ellis R, Wattie J, Glass W, Inman MD (2008) Goblet cell rebound and airway dysfunction with corticosteroid withdrawal in a mouse model of asthma. Am J Respir Crit Care Med 178(11):1115–1122

    Article  CAS  PubMed  Google Scholar 

  29. Nath P, Leung SY, Williams AS, Noble A, Xie S, McKenzie AN et al (2007) Complete inhibition of allergic airway inflammation and remodelling in quadruple IL-4/5/9/13-/- mice. Clin Exp Allergy 37(10):1427–1435

    CAS  PubMed  Google Scholar 

  30. Saradna A, Do DC, Kumar S, Fu QL, Gao P (2018) Macrophage polarization and allergic asthma. Transl Res 191:1–14

    Article  CAS  PubMed  Google Scholar 

  31. Joshi AD, Oak SR, Hartigan AJ, Finn WG, Kunkel SL, Duffy KE et al (2010) Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages. BMC Immunol 11:52

    Article  PubMed  PubMed Central  Google Scholar 

  32. Biondo C, Midiri A, Messina L, Tomasello F, Garufi G, Catania MR et al (2005) MyD88 and TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans. Eur J Immunol 35(3):870–878

    Article  CAS  PubMed  Google Scholar 

  33. Nishizaki T (2018) IL-33 suppresses GSK-3β activation through an ST2-independent MyD88/TRAF6/RIP/PI3K/Akt pathway. Heliyon 4(11):e00971

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yoshimoto T (2018) The hunt for the source of primary interleukin-4: how we discovered that natural killer T cells and basophils determine T helper type 2 cell differentiation in vivo. Front Immunol 9:716

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y et al (2012) Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol 188(2):703–713

    Article  CAS  PubMed  Google Scholar 

  36. Wu CA, Peluso JJ, Zhu L, Lingenheld EG, Walker ST, Puddington L (2010) Bronchial epithelial cells produce IL-5: implications for local immune responses in the airways. Cell Immunol 264(1):32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Precision Medicine Research of the National Key Research and Development Plan of China (2016YFC0905800), the National Natural Science Foundation of China (82171738, 81671563, 81770031, and 81970031), and the Jiangsu Provincial Health and Family Planning Commission Foundation (Q2017001).

Author information

Authors and Affiliations

Authors

Contributions

ZW performed animal experiments and drafted the paper. QM analyzed the data. JJ performed the in vitro experiments. XY, EZ, YT and HH helped with improving the methodology. MH contributed to the paper revision. NJ and MZ designed and supervised the project.

Corresponding authors

Correspondence to Mao Huang, Ningfei Ji or Mingshun Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Edited by Christian Bogdan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

430_2022_755_MOESM1_ESM.tif

Supplementary file1 Figure S1 Flow cytometry for the gating strategy of cells in BALF. Flow cytometry shows the gating strategy of total cells (R2 gate) and neutrophils (R3 gate) of cryptococcal-infected mice in BALF. Refer to Figure 6B, 6C. (TIF 233 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ma, Q., Jiang, J. et al. A comparative study of IL-33 and its receptor ST2 in a C57BL/6 J mouse model of pulmonary Cryptococcus neoformans infection. Med Microbiol Immunol 212, 53–63 (2023). https://doi.org/10.1007/s00430-022-00755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-022-00755-4

Keywords

Navigation