Skip to main content
Log in

Effect of fermentation pH on the structure, rheological properties, and antioxidant activities of exopolysaccharides produced by Alteromonas australica QD

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The pH value was essential for the growth and metabolism of microorganisms. Acidic pH exopolysaccharide (AC-EPS) and alkaline pH exopolysaccharide (AL-EPS) secreted by A. australica QD mediated by pH were studied in this paper. The total carbohydrate content and molecular weight of AC-EPS (79.59% ± 2.24% (w/w), 8.374 × 105 Da) and AL-EPS (82.48% ± 1.46% (w/w), 6.182 × 105 Da) were estimated and compared. In AC-EPS, mannose (3.78%) and galactose (3.24%) content was more, while the proportion of glucuronic acid was less in comparison to AL-EPS. The scanning electron microscopy revealed the structural differences among the AC-EPS and AL-EPS. Thermogravimetric analysis showed degradation temperatures of 272.8 °C and 244.9 °C for AC-EPS and AL-EPS, respectively. AC-EPS was found to exhibit better rheological properties and emulsifying capabilities, while AL-EPS had superior antioxidant activities. Overall, both AC-EPS and AL-EPS have the potential to be used as emulsifiers and biological antioxidants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andrew, M., Jayaraman, G.: Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydr. Res. 487, 107881 (2020). https://doi.org/10.1016/j.carres.2019.107881

    Article  CAS  Google Scholar 

  2. Le Costaouec, T., Cerantola, S., Ropartz, D., Ratiskol, J., Sinquin, C., Colliec-Jouault, S., Boisset, C.: Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain. Carbohydr. Polym. 90(1), 49–59 (2012). https://doi.org/10.1016/j.carbpol.2012.04.059

    Article  CAS  Google Scholar 

  3. Wang, X., Shao, C., Liu, L., Guo, X., Xu, Y., Lu, X.: Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int. J. Biol. Macromol. 103, 1173–1184 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.118

    Article  CAS  Google Scholar 

  4. Sahana, T.G., Rekha, P.D.: A bioactive exopolysaccharide from marine bacteria Alteromonas sp. PRIM-28 and its role in cell proliferation and wound healing in vitro. Int. J. Biol. Macromol. 131, 10–18 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.048

  5. Wu, Y., Cui, S.W., Wu, J., Ai, L., Wang, Q., Tang, J.: Structure characteristics and rheological properties of acidic polysaccharide from boat-fruited sterculia seeds. Carbohydr. Polym. 88(3), 926–930 (2012). https://doi.org/10.1016/j.carbpol.2012.01.035

    Article  CAS  Google Scholar 

  6. Shukla, A., Mehta, K., Parmar, J., Pandya, J., Saraf, M.: Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell. Eur. Polym. J. 119, 298–310 (2019). https://doi.org/10.1016/j.eurpolymj.2019.07.044

    Article  CAS  Google Scholar 

  7. Sun, L., Yang, Y., Lei, P., Li, S., Xu, H., Wang, R., Qiu, Y., Zhang, W.: Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Pantoea alhagi NX-11. Carbohydr. Polym. 261, 117872 (2021). https://doi.org/10.1016/j.carbpol.2021.117872

    Article  CAS  Google Scholar 

  8. Adeli, M., Samavati, V.: Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit. Int. J. Biol. Macromol. 72, 580–587 (2015). https://doi.org/10.1016/j.ijbiomac.2014.08.047

    Article  CAS  Google Scholar 

  9. Kavitake, D., Techi, M., Abid, U.K., Kandasamy, S., Devi, P.B., Shetty, P.H.: Effect of gamma-irradiation on physico-chemical and antioxidant properties of galactan exopolysaccharide from Weissella confusa KR780676. J. Food Sci. Technol. 56(4), 1766–1774 (2019). https://doi.org/10.1007/s13197-019-03608-w

    Article  CAS  Google Scholar 

  10. Ge, X., Ma, F., Zhang, B.: Effect of intense pulsed light on Lactobacillus bulgaricus exopolysaccharide yield, chemical structure and antioxidant activity. Int. J. Food Sci. Technol. 56(2), 865–873 (2020). https://doi.org/10.1111/ijfs.14730

    Article  Google Scholar 

  11. Xiao, L., Li, Y., Tian, J., Zhou, J., Xu, Q., Feng, L., Rui, X., Fan, X., Zhang, Q., Chen, X., Dong, M., Li, W.: Influences of drying methods on the structural, physicochemical and antioxidant properties of exopolysaccharide from Lactobacillus helveticus MB2-1. Int. J. Biol. Macromol. 157, 220–231 (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.196

    Article  CAS  Google Scholar 

  12. Hu, X., Fu, H., Bao, M., Zhang, X., Liu, W., Sun, X., Pan, Y.: Temperature mediates metabolism switching of Bacillus sp. ZT-1: Analysis of the properties and structure of exopolysaccharides. Microbiol. Res. 251, 126839 (2021). https://doi.org/10.1016/j.micres.2021.126839

  13. Navarini, L., Cesàro, A., Ross-Murphy, S.B.: Exopolysaccharides from Rhizobium meliloti YE-2 grown under different osmolarity conditions: viscoelastic properties. Carbohydr. Res. 223(4), 227–234 (1992). https://doi.org/10.1016/0008-6215(92)80019-W

    Article  CAS  Google Scholar 

  14. Yan, Wu.: Xuewei, Jia, Dongye, Huang, Jianqiang, Zheng, Zhizhong, Hu: Production, structural characterization, and antiproliferative activity of exopolysaccharide produced by Scleroderma areolatum Ehrenb with different carbon source. Braz. J. Microbiol. (2019). https://doi.org/10.1007/s42770-019-00071-9

    Article  Google Scholar 

  15. Madshus, H, I.: Regulation of intracellular pH in eukaryotic cells. Biochem. J. 250(1), 1–8 (1988). https://doi.org/10.1042/bj2500001

  16. Beales, N.: Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. Compr. Rev. Food Sci. Food Saf. 3(1), 1–20 (2004). https://doi.org/10.1111/j.1541-4337.2004.tb00057.x

  17. Ju, Y., Shan, K., Liu, W., Xi, C., Zhang, Y., Wang, W., Wang, C., Cao, R., Zhu, W., Wang, H., Zhao, Y., Hao, L.: Effect of Different Initial Fermentation pH on Exopolysaccharides Produced by Pseudoalteromonas agarivorans Hao 2018 and Identification of Key Genes Involved in Exopolysaccharide Synthesis via Transcriptome Analysis. Mar. Drugs 20(2) (2022). https://doi.org/10.3390/md20020089

  18. Roca, C., Lehmann, M., Torres, C.A.V., Baptista, S., Gaudêncio, S.P., Freitas, F., Reis, M.A.M.: Exopolysaccharide production by a marine Pseudoalteromonas sp. strain isolated from Madeira Archipelago ocean sediments. New Biotechnol. 33(4), 460–466 (2016). https://doi.org/10.1016/j.nbt.2016.02.005

  19. Goto, S., Tada, Y., Suzuki, K., Yamashita, Y.: Production and Reutilization of Fluorescent Dissolved Organic Matter by a Marine Bacterial Strain. Alteromonas macleodii. Front. Microbiol. 8, 507 (2017). https://doi.org/10.3389/fmicb.2017.00507

    Article  Google Scholar 

  20. Torres, M., Rubio-Portillo, E., Anton, J., Ramos-Espla, A.A., Quesada, E., Llamas, I.: Selection of the N-Acylhomoserine Lactone-Degrading Bacterium Alteromonas stellipolaris PQQ-42 and of Its Potential for Biocontrol in Aquaculture. Front. Microbiol. 7, 646 (2016). https://doi.org/10.3389/fmicb.2016.00646

    Article  Google Scholar 

  21. Zhang, Z., Cai, R., Zhang, W., Fu, Y., Jiao, N.: A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810. Mar. Drugs 15(6) (2017). https://doi.org/10.3390/md15060175

  22. Zhao, D., Jiang, J., Du, R., Guo, S., Ping, W., Ling, H., Ge, J.: Purification and characterization of an exopolysaccharide from Leuconostoc lactis L2. Int. J. Biol. Macromol. 139, 1224–1231 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.114

    Article  CAS  Google Scholar 

  23. Zhai, Z., Chen, A., Zhou, H., Zhang, D., Du, X., Liu, Q., Wu, X., Cheng, J., Chen, L., Hu, F., Liu, Y., Su, P.: Structural characterization and functional activity of an exopolysaccharide secreted by Rhodopseudomonas palustris GJ-22. Int. J. Biol. Macromol. 167, 160–168 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.165

    Article  CAS  Google Scholar 

  24. Wei, M., Geng, L., Wang, Q., Yue, Y., Wang, J., Wu, N., Wang, X., Sun, C., Zhang, Q.: Purification, characterization and immunostimulatory activity of a novel exopolysaccharide from Bacillus sp. H5. Int. J. Biol. Macromol. 189, 649–656 (2021). https://doi.org/10.1016/j.ijbiomac.2021.08.159

  25. Wang, N., Jia, G., Wang, C., Chen, M., Xie, F., Nepovinnykh, N.V., Goff, H.D., Guo, Q.: Structural characterisation and immunomodulatory activity of exopolysaccharides from liquid fermentation of Monascus purpureus (Hong Qu). Food Hydrocolloids 103, 105636 (2020). https://doi.org/10.1016/j.foodhyd.2019.105636

    Article  CAS  Google Scholar 

  26. Hentati, F., Pierre, G., Ursu, A.V., Vial, C., Delattre, C., Abdelkafi, S., Michaud, P.: Rheological investigations of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Food Hydrocolloids 103 (2020). https://doi.org/10.1016/j.foodhyd.2019.105631

  27. Xiao, L., Han, S., Zhou, J., Xu, Q., Dong, M., Fan, X., Rui, X., Chen, X., Zhang, Q., Li, W.: Preparation, characterization and antioxidant activities of derivatives of exopolysaccharide from Lactobacillus helveticus MB2-1. Int. J. Biol. Macromol. 145, 1008–1017 (2020). https://doi.org/10.1016/j.ijbiomac.2019.09.192

    Article  CAS  Google Scholar 

  28. Cao, C., Li, Y., Wang, C., Zhang, N., Zhu, X., Wu, R., Wu, J.: Purification, characterization and antitumor activity of an exopolysaccharide produced by Bacillus velezensis SN-1. Int. J. Biol. Macromol. 156, 354–361 (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.024

    Article  CAS  Google Scholar 

  29. Deepak, V., Ram Kumar Pandian, S., Sivasubramaniam, S.D., Nellaiah, H., Sundar, K.: Optimization of anticancer exopolysaccharide production from probiotic Lactobacillus acidophilus by response surface methodology. Prep. Biochem. Biotechnol. 46(3), 288–297 (2016). https://doi.org/10.1080/10826068.2015.1031386

  30. Hu, X., Li, D., Qiao, Y., Song, Q., Guan, Z., Qiu, K., Cao, J., Huang, L.: Salt tolerance mechanism of a hydrocarbon-degrading strain: Salt tolerance mediated by accumulated betaine in cells. J. Hazard. Mater. 392, 122326 (2020). https://doi.org/10.1016/j.jhazmat.2020.122326

    Article  CAS  Google Scholar 

  31. Ferreira, A.S., Mendonça, I., Póvoa, I., Carvalho, H., Correia, A., Vilanova, M., Silva, T.H., Coimbra, M.A., Nunes, C.: Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. Algal Res. 59 (2021). https://doi.org/10.1016/j.algal.2021.102439

  32. Su, C., Chi, Z., Lu, W.: Optimization of medium and cultivation conditions for enhanced exopolysaccharide yield by marine Cyanothece sp. 113. Chin. J. Oceanol. Limnol. 25(4), 411–417 (2007). https://doi.org/10.1007/s00343-007-0411-3

  33. Sun, M.L., Liu, S.B., Qiao, L.P., Chen, X.L., Pang, X., Shi, M., Zhang, X.Y., Qin, Q.L., Zhou, B.C., Zhang, Y.Z., Xie, B.B.: A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: low-cost fermentation, moisture retention, and antioxidant activities. Appl. Microbiol. Biotechnol. 98(17), 7437–7445 (2014). https://doi.org/10.1007/s00253-014-5839-8

    Article  CAS  Google Scholar 

  34. Song, J., Jia, Y.X., Su, Y., Zhang, X.Y., Tu, L.N., Nie, Z.Q., Zheng, Y., Wang, M.: Initial Analysis on the Characteristics and Synthesis of Exopolysaccharides from Sclerotium rolfsii with Different Sugars as Carbon Sources. Polymers 12(2) (2020). https://doi.org/10.3390/polym12020348

  35. Zhu, Z.Y., Liu, X.C., Tang, Y.L., Dong, F.Y., Sun, H.Q., Chen, L., Zhang, Y.M.: Effects of cultural medium on the formation and antitumor activity of polysaccharides by Cordyceps gunnii. J. Biosci. Bioeng. 122(4), 494–498 (2016). https://doi.org/10.1016/j.jbiosc.2016.03.015

    Article  CAS  Google Scholar 

  36. Zhang, Y., Dai, X., Jin, H., Man, C., Jiang, Y.: The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by Lactobacillus paracasei. J. Dairy Sci. 104(4), 4023–4032 (2021). https://doi.org/10.3168/jds.2020-19448

    Article  CAS  Google Scholar 

  37. Hao, L., Liu, W., Liu, K., Shan, K., Wang, C., Xi, C., Liu, J., Fan, Q., Zhang, X., Lu, X., Xu, Y., Cao, R., Ma, Y., Zheng, L., Cui, B.: Isolation, Optimization of Fermentation Conditions, and Characterization of an Exopolysaccharide from Pseudoalteromonas agarivorans Hao 2018. Mar. Drugs 17(12) (2019). https://doi.org/10.3390/md17120703

  38. Patel, V., Soni, H.P., Patel, F.: Statistical Optimization of Medium for Enhanced Production of Exopolysaccharide by Marine Bacteria Enterobacter cloacae VHP-34. Ind. Biotechnol. 17(6), 326–334 (2021). https://doi.org/10.1089/ind.2021.0014

    Article  CAS  Google Scholar 

  39. Shu, C.-H., Lung, M.-Y.: Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochem. 39(8), 931–937 (2004). https://doi.org/10.1016/s0032-9592(03)00220-6

    Article  CAS  Google Scholar 

  40. Rougeaux, H., Talaga, P., Carlson, R.W., Guezennec, J.: Structural studies of an exopolysaccharide produced by Alteromonas macleodii subsp. fijiensis originating from a deep-sea hydrothermal vent. Carbohydr. Res. 312(1–2), 53–59 (1998). https://doi.org/10.1016/S0008-6215(97)10061-1

  41. Yang, F., Chen, J., Ye, S., Liu, Z., Ding, Y.: Characterization of antioxidant activity of exopolysaccharides from endophytic Lysinibacillus sphaericus Ya6 under osmotic stress conditions. Process Biochem. 113, 87–96 (2022). https://doi.org/10.1016/j.procbio.2021.12.023

    Article  CAS  Google Scholar 

  42. Cai, Z.N., Li, W., Mehmood, S., Pan, W.J., Wang, Y., Meng, F.J., Wang, X.F., Lu, Y.M., Chen, Y.: Structural characterization, in vitro and in vivo antioxidant activities of a heteropolysaccharide from the fruiting bodies of Morchella esculenta. Carbohydr. Polym. 195, 29–38 (2018). https://doi.org/10.1016/j.carbpol.2018.04.069

    Article  CAS  Google Scholar 

  43. Li, J., Wu, H., Liu, Y., Nan, J., Park, H.J., Chen, Y., Yang, L.: The chemical structure and immunomodulatory activity of an exopolysaccharide produced by Morchella esculenta under submerged fermentation. Food Funct. 12(19), 9327–9338 (2021). https://doi.org/10.1039/d1fo01683k

    Article  CAS  Google Scholar 

  44. Prasanna, P.H., Bell, A., Grandison, A.S., Charalampopoulos, D.: Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydr. Polym. 90(1), 533–540 (2012). https://doi.org/10.1016/j.carbpol.2012.05.075

  45. Zhu, W., Wang, Y., Yan, F., Song, R., Li, Z., Li, Y., Song, B.: Physical and chemical properties, percutaneous absorption-promoting effects of exopolysaccharide produced by Bacillus atrophaeus WYZ strain. Carbohydr. Polym. 192, 52–60 (2018). https://doi.org/10.1016/j.carbpol.2018.03.063

    Article  CAS  Google Scholar 

  46. Lobo, R.E., Gómez, M.I., Font de Valdez, G., Torino, M.I.: Physicochemical and antioxidant properties of a gastroprotective exopolysaccharide produced by Streptococcus thermophilus CRL1190. Food Hydrocolloids 96, 625–633 (2019). https://doi.org/10.1016/j.foodhyd.2019.05.036

  47. Parikh, A., Madamwar, D.: Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour. Technol. 97(15), 1822–1827 (2006). https://doi.org/10.1016/j.biortech.2005.09.008

    Article  CAS  Google Scholar 

  48. Wang, J., Zhao, X., Yang, Y., Zhao, A., Yang, Z.: Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int. J. Biol. Macromol. 74, 119–126 (2015). https://doi.org/10.1016/j.ijbiomac.2014.12.006

    Article  CAS  Google Scholar 

  49. Freitas, F., Alves, V.D., Carvalheira, M., Costa, N., Oliveira, R., Reis, M.A.M.: Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr. Polym. 78(3), 549–556 (2009). https://doi.org/10.1016/j.carbpol.2009.05.016

    Article  CAS  Google Scholar 

  50. Li, L., Liao, B.Y., Thakur, K., Zhang, J.G., Wei, Z.J.: The rheological behavior of polysaccharides sequential extracted from Polygonatum cyrtonema Hua. Int. J. Biol. Macromol. 109, 761–771 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.063

    Article  CAS  Google Scholar 

  51. Yang, L., Zhang, H., Zhao, Y., Huang, J., Zhu, D., Wang, S., Zhu, L., Chen, L., Xu, X., Liu, H.: Chemical structure, chain conformation and rheological properties of pectic polysaccharides from soy hulls. Int. J. Biol. Macromol. 148, 41–48 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.047

    Article  CAS  Google Scholar 

  52. Ikeda, S., Murayama, D., Tsurumaki, A., Sato, S., Urashima, T., Fukuda, K.: Rheological characteristics and supramolecular structure of the exopolysaccharide produced by Lactobacillus fermentum MTCC 25067. Carbohydr. Polym. 218, 226–233 (2019). https://doi.org/10.1016/j.carbpol.2019.04.076

    Article  CAS  Google Scholar 

  53. Medina-Cabrera, E.V., Gansbiller, M., Ruhmann, B., Schmid, J., Sieber, V.: Rheological characterization of Porphyridium sordidum and Porphyridium purpureum exopolysaccharides. Carbohydr. Polym. 253, 117237 (2021). https://doi.org/10.1016/j.carbpol.2020.117237

    Article  CAS  Google Scholar 

  54. Xu, L., Dong, M., Gong, H., Sun, M., Li, Y.: Effects of inorganic cations on the rheology of aqueous welan, xanthan, gellan solutions and their mixtures. Carbohydr. Polym. 121, 147–154 (2015). https://doi.org/10.1016/j.carbpol.2014.12.030

    Article  CAS  Google Scholar 

  55. Ji, Y.H., Liao, A.M., Huang, J.H., Thakur, K., Li, X.L., Hu, F., Wei, Z.J.: The rheological properties and emulsifying behavior of polysaccharides sequentially extracted from Amana edulis. Int. J. Biol. Macromol. 137, 160–168 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.202

    Article  CAS  Google Scholar 

  56. Xu, G.Y., Liao, A.M., Huang, J.H., Zhang, J.G., Thakur, K., Wei, Z.J.: The rheological properties of differentially extracted polysaccharides from potatoes peels. Int. J. Biol. Macromol. 137, 1–7 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.175

    Article  CAS  Google Scholar 

  57. Wang, H., Ke, L., Ding, Y., Rao, P., Xu, T., Han, H., Zhou, J., Ding, W., Shang, X.: Effect of calcium ions on rheological properties and structure of Lycium barbarum L. polysaccharide and its gelation mechanism. Food Hydrocolloids 122 (2022). https://doi.org/10.1016/j.foodhyd.2021.107079

  58. Shao, H., Zhang, H., Tian, Y., Song, Z., Lai, P.F.H., Ai, L.: Composition and Rheological Properties of Polysaccharide Extracted from Tamarind (Tamarindus indica L.) Seed. Molecules 24(7) (2019). https://doi.org/10.3390/molecules24071218

  59. Alvarez, V.M., Jurelevicius, D., Serrato, R.V., Barreto-Bergter, E., Seldin, L.: Chemical characterization and potential application of exopolysaccharides produced by Ensifer adhaerens JHT2 as a bioemulsifier of edible oils. Int. J. Biol. Macromol. 114, 18–25 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.063

    Article  CAS  Google Scholar 

  60. Hu, X., Qiao, Y., Chen, L.-Q., Du, J.-F., Fu, Y.-Y., Wu, S., Huang, L.: Enhancement of solubilization and biodegradation of petroleum by biosurfactant from Rhodococcus erythropolis HX-2. Geomicrobiol. J. 37(2), 159–169 (2019). https://doi.org/10.1080/01490451.2019.1678702

    Article  CAS  Google Scholar 

  61. Ye, S., Liu, F., Wang, J., Wang, H., Zhang, M.: Antioxidant activities of an exopolysaccharide isolated and purified from marine Pseudomonas PF-6. Carbohydr. Polym. 87(1), 764–770 (2012). https://doi.org/10.1016/j.carbpol.2011.08.057

    Article  CAS  Google Scholar 

  62. Xiong, Y.W., Ju, X.Y., Li, X.W., Gong, Y., Xu, M.J., Zhang, C.M., Yuan, B., Lv, Z.P., Qin, S.: Fermentation conditions optimization, purification, and antioxidant activity of exopolysaccharides obtained from the plant growth-promoting endophytic actinobacterium Glutamicibacter halophytocola KLBMP 5180. Int. J. Biol. Macromol. 153, 1176–1185 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.247

    Article  CAS  Google Scholar 

  63. Wen, Z., Jian, Z., Yun-Yun, J., Xiao, Z., Xiao- Na, H., Liu, L., Zhen-Nai, Y.: Characterization and Antioxidant Activity of the Exopolysaccharide Produced by Bacillus amyloliquefaciens GSBa-1. J. Microbiol. Biotechnol. 28(8), 1282–1292 (2018). https://doi.org/10.4014/jmb.1801.01012

    Article  CAS  Google Scholar 

  64. Adesulu-Dahunsi, A.T., Sanni, A.I., Jeyaram, K.: Production, characterization and In vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT-Food Sci. Technol. 87, 432–442 (2018). https://doi.org/10.1016/j.lwt.2017.09.013

    Article  CAS  Google Scholar 

  65. Shilin, C.A.O., Huaiyu, Z., Shiyu, F.U., Lihui, C.: Regulation of Superoxide Anion Radical During the Oxygen Delignification Process. Chin. J. Chem. Eng. 15(1), 132–137 (2007). https://doi.org/10.1016/s1004-9541(07)60046-9

    Article  Google Scholar 

  66. Cao, J., Zhang, H.-J., Xu, C.-P.: Culture characterization of exopolysaccharides with antioxidant activity produced by Pycnoporus sanguineus in stirred-tank and airlift reactors. J. Taiwan Inst. Chem. Eng. 45(5), 2075–2080 (2014). https://doi.org/10.1016/j.jtice.2014.05.005

    Article  CAS  Google Scholar 

  67. Xia, M., Zhang, S., Shen, L., Yu, R., Liu, Y., Li, J., Wu, X., Chen, M., Qiu, G., Zeng, W.: Optimization and Characterization of an Antioxidant Exopolysaccharide Produced by Cupriavidus pauculus 1490. J. Polym. Environ. 30(5), 2077–2086 (2021). https://doi.org/10.1007/s10924-021-02339-4

    Article  CAS  Google Scholar 

  68. Hu, X., Pang, X., Wang, P.G., Chen, M.: Isolation and characterization of an antioxidant exopolysaccharide produced by Bacillus sp. S-1 from Sichuan Pickles. Carbohydr. Polym. 204, 9–16 (2019). https://doi.org/10.1016/j.carbpol.2018.09.069

  69. Xu, R.B., Yang, X., Wang, J., Zhao, H.T., Lu, W.H., Cui, J., Cheng, C.L., Zou, P., Huang, W.W., Wang, P., Li, W.J., Hu, X.L.: Chemical composition and antioxidant activities of three polysaccharide fractions from pine cones. Int. J. Mol. Sci. 13(11), 14262–14277 (2012). https://doi.org/10.3390/ijms131114262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It is supported by the Open Project Program of Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources (2022103), the National Natural Science Funds of China (42106156), the Major Scientific and Technological Innovation Project of Shandong (2021CXGC010705) and the Fundamental Research Funds for the Central Universities (202161007).

Author information

Authors and Affiliations

Authors

Contributions

Fengshu Li designed and implemented the experiment, and prepared the manuscript. Xin Hu helped to complete the EPS optimization. Xiaojun Sun analyzed antioxidant experimental data. Haoshuai Li analyzed FT-IR data. Jinren Lu helped to complete the rheological experiments. Yiming Li supervised the study. Mutai Bao designed and supervised the study, and completed the final manuscript.

Corresponding author

Correspondence to Mutai Bao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A novel exopolysaccharide was isolated from A. australica QD.

• The pH change caused the difference in the structure and properties of AC-EPS and AL-EPS.

• AC-EPS and AL-EPS were structurally composed of Man, GlcN, GlcA, GalN, Glc and Gal.

• AC-EPS and AL-EPS exhibited the potential as emulsifiers and biological antioxidants.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Hu, X., Sun, X. et al. Effect of fermentation pH on the structure, rheological properties, and antioxidant activities of exopolysaccharides produced by Alteromonas australica QD. Glycoconj J 39, 773–787 (2022). https://doi.org/10.1007/s10719-022-10087-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10087-3

Keywords

Navigation