Skip to main content

Advertisement

Log in

In vitro and in vivo therapeutic antileishmanial potential of ellagic acid against Leishmania donovani in murine model

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Parasite of genus Leishmania viz. L. donovani and L. infantum cause visceral leishmaniasis (VL) or Kala-azar, systemic disease with significant enlargement of the liver and spleen, weight loss, anemia, fever and immunosuppression. The silent expansion of vectors, reservoir hosts and resistant strains is also of great concern in VL control. Considering all these issues, the present study focused on in vitro and in vivo antileishmanial screening of ellagic acid (EA) against L. donovani. The in vitro study was performed against the protozoan parasite L. donovani and a 50% inhibitory concentration was calculated. The DNA arrest in the sub-G0/G1 phase of the cell cycle was studied. In vivo studies included the assessment of parasite burden and immunomodulation in response to treatment of ellagic acid in BALB/c mice. The levels of Th1 and Th2 cytokines and isotype antibodies were assessed in different groups of mice. EA showed in vitro parasiticidal activity with IC50 18.55 µg/mL and thwarted cell-cycle progression at the sub-G0/G1 phase. Administration of ellagic acid to the BALB/c mice reported diminution of splenic and hepatic parasite burden coupled with an expansion of CD4+ and CD8+ T lymphocytes. EA further potentiated a protective immune response with augmentation of Th1 type immune response evidenced by elevation of serum IgG2a levels and DTH response. EA was reported to be safe and non-toxic to the THP-1 cell line as well as to the liver and kidneys of mice. These findings endorse the therapeutic potential of EA with significant immunomodulation and can serve as a promising agent against this debilitating parasitic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Ponte-Sucre A, Gamarro F, Dujardin JC et al (2017) Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis 11:1–24

    Article  Google Scholar 

  2. Goyal DK, Keshav P, Kaur S (2021) Adjuvant effects of TLR agonist gardiquimod admixed with Leishmania vaccine in mice model of visceral leishmaniasis. Infect Genet Evol 93:104947

    Article  CAS  PubMed  Google Scholar 

  3. Mendonça-Filho RR, Rodrigues IA, Alviano DS et al (2004) Leishmanicidal activity of polyphenolic-rich extract from husk fiber of Cocos nucifera Linn. (Palmae). Res Microbiol 155:136–143

    Article  PubMed  Google Scholar 

  4. Ibarra-Meneses AV, Moreno J, Carrillo E (2020) New strategies and biomarkers for the control of visceral leishmaniasis. Trends Parasitol 36:29–38

    Article  PubMed  Google Scholar 

  5. Keshav P, Goyal DK, Kaur S (2021) GC–MS screening and antiparasitic action of Putranjiva roxburghii leaves against sensitive and resistant strains of Leishmania donovani. J Parasit Dis 45:1002–1013

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wijerathna T, Gunathilaka N, Gunawardana K, Rodrigo W (2017) Potential challenges of controlling leishmaniasis in Sri Lanka at a disease outbreak. Biomed Res Int 2017:6931497

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kamhawi S (2017) The yin and yang of leishmaniasis control. PLoS Negl Trop Dis 11:1–6

    Article  Google Scholar 

  8. Goyal DK, Keshav P, Kaur S (2021) Adjuvanted vaccines driven protection against visceral infection in BALB/c mice by Leishmania donovani. Microb Pathog 151:104733

    Article  CAS  PubMed  Google Scholar 

  9. Chakravarty J, Sundar S (2010) Drug resistance in leishmaniasis. J Glob Infect Dis 2:167

    Article  PubMed  PubMed Central  Google Scholar 

  10. Srivastava P, Prajapati VK, Rai M, Sundar S (2011) Unusual case of resistance to amphotericin B in visceral leishmaniasis in a region in India where leishmaniasis is not endemic. J Clin Microbiol 49:3088–3091

    Article  PubMed  PubMed Central  Google Scholar 

  11. Srivastava S, Mishra J, Gupta AK et al (2017) Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India. Parasit Vectors 10:1–11

    Article  Google Scholar 

  12. Carnielli JBT, Monti-Rocha R, Costa DL et al (2019) Natural resistance of Leishmania infantum to miltefosine contributes to the low efficacy in the treatment of visceral leishmaniasis in Brazil. Am J Trop Med Hyg 101:789–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goyal DK, Keshav P, Kaur S (2021) Immune induction by adjuvanted Leishmania donovani vaccines against the visceral leishmaniasis in BALB/c mice. Immunobiology 226:1–15

    Article  Google Scholar 

  14. Goyal DK, Keshav P, Kaur S (2021) Antiparasitic potential of Indian honey bee glue against strains of Leishmania donovani sensitive and resistant to synthetic antileishmanial. Biologia (Bratisl) 76:3841–3854

    Article  CAS  Google Scholar 

  15. Majumder N, Ganguly S, Ghosh AK et al (2020) Chlorogenic acid acts upon Leishmania donovani arresting cell cycle and modulating cytokines and nitric oxide in vitro. Parasite Immunol 42:1–12

    Article  Google Scholar 

  16. Bhattacharjee S, Bhattacharjee A, Majumder S et al (2012) Glycyrrhizic acid suppresses cox-2-mediated anti-inflammatory responses during Leishmania donovani infection. J Antimicrob Chemother 67:1905–1914

    Article  CAS  PubMed  Google Scholar 

  17. Ceci C, Lacal PM, Tentori L et al (2018) Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 10:1–23

    Article  Google Scholar 

  18. Girish C, Pradhan SC (2008) Drug development for liver diseases: focus on picroliv, ellagic acid and curcumin. Fundam Clin Pharmacol 22:623–632

    Article  CAS  PubMed  Google Scholar 

  19. Zhang HM, Zhao L, Li H et al (2014) Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol Med 11:92–100

    PubMed  PubMed Central  Google Scholar 

  20. Lin Z, Lin C, Fu C et al (2020) The protective effect of ellagic acid (EA) in osteoarthritis: an in vitro and in vivo study. Biomed Pharmacother 125:109845

    Article  CAS  PubMed  Google Scholar 

  21. Alves MMM, Brito LM, Souza AC et al (2017) Gallic and ellagic acids: two natural immunomodulator compounds solve infection of macrophages by Leishmania major. Naunyn Schmiedebergs Arch Pharmacol 390:893–903

    Article  CAS  PubMed  Google Scholar 

  22. de Moraes Alves MM, Arcanjo DDR, Figueiredo KA et al (2020) Gallic and ellagic acids are promising adjuvants to conventional amphotericin b for the treatment of cutaneous leishmaniasis. Antimicrob Agents Chemother 64:e00807-e820

    Google Scholar 

  23. Singh SK, Bimal S, Narayan S et al (2011) Leishmania donovani: assessment of leishmanicidal effects of herbal extracts obtained from plants in the visceral leishmaniasis endemic area of Bihar, India. Exp Parasitol 127:552–558

    Article  PubMed  Google Scholar 

  24. Chandrasekaran S, Dayakar A, Veronica J et al (2013) An in vitro study of apoptotic like death in Leishmania donovani promastigotes by with anolides. Parasitol Int 62:253–261

    Article  CAS  PubMed  Google Scholar 

  25. Essid R, Rahali FZ, Msaada K et al (2015) Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind Crops Prod 77:795–802

    Article  CAS  Google Scholar 

  26. Kaur S, Kaur T, Garg N et al (2008) Effect of dose and route of inoculation on the generation of CD4 + Th1/Th2 type of immune response in murine visceral leishmaniasis. Parasitol Res 103:1413–1419

    Article  PubMed  Google Scholar 

  27. Bradley DJ, Kirkley J (1977) Regulation of Leishmania populations within the host. I. The variable course of Leishmania donovani infections in mice. Clin Exp Immunol 30:119–129

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shivahare R, Vishwakarma P, Parmar N et al (2014) Combination of liposomal CpG oligodeoxynucleotide 2006 and miltefosine induces strong cell-mediated immunity during experimental visceral leishmaniasis. PLoS ONE 9:1–12

    Article  Google Scholar 

  29. Bhaumik SK, Paul J, Naskar K et al (2012) Asiaticoside induces tumour-necrosis-factor-α-mediated nitric oxide production to cure experimental visceral leishmaniasis caused by antimony-susceptible and -resistant Leishmania donovani strains. J Antimicrob Chemother 67:910–920

    Article  CAS  PubMed  Google Scholar 

  30. Gupta A, Khajuria A, Singh J et al (2006) Immunomodulatory activity of biopolymeric fraction RLJ-NE-205 from Picrorhiza kurroa. Int Immunopharmacol 6:1543–1549

    Article  CAS  PubMed  Google Scholar 

  31. Goyal DK, Keshav P, Kaur S (2021) Potential of TLR agonist as an adjuvant in leishmania vaccine against visceral leishmaniasis in BALB/c mice. Microb Pathog 158:105021

    Article  CAS  PubMed  Google Scholar 

  32. Singh OP, Sundar S (2014) Immunotherapy and targeted therapies in treatment of visceral leishmaniasis: current status and future prospects. Front Immunol 5:1–9

    Article  Google Scholar 

  33. Monzote L, Perera Córdova WH, García M et al (2016) In-vitro and in-vivo activities of phenolic compounds against cutaneous leishmaniasis. Rec Nat Prod 10:269–276

    CAS  Google Scholar 

  34. Antwi CA, Amisigo CM, Adjimani JP, Gwira TM (2019) In vitro activity and mode of action of phenolic compounds on Leishmania donovani. PLoS Negl Trop Dis 13:1–22

    Article  Google Scholar 

  35. Islamuddin M, Chouhan G, Farooque A et al (2015) Th1-biased immunomodulation and therapeutic potential of Artemisia annua in murine visceral leishmaniasis. PLoS Negl Trop Dis 9:e3321

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kaur J, Singh N, Singh BK et al (2010) Leishmania donovani: oral therapy with glycosyl 1,4-dihydropyridine analogue showing apoptosis like phenotypes targeting pteridine reductase 1 in intracellular amastigotes. Exp Parasitol 125:310–314

    Article  CAS  PubMed  Google Scholar 

  37. Saha P, Sen R, Hariharan C et al (2009) Berberine chloride causes a caspase-independent, apoptotic-like death in Leishmania donovani promastigotes. Free Radic Res 43:1101–1110

    Article  CAS  PubMed  Google Scholar 

  38. Chung YC, Lu LC, Tsai MH et al (2013) The inhibitory effect of ellagic acid on cell growth of ovarian carcinoma cells. Evid Based Complement Altern Med 2013:306705

    Article  Google Scholar 

  39. Chen HS, Bai MH, Zhang T et al (2015) Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int J Oncol 46:1730–1738

    Article  CAS  PubMed  Google Scholar 

  40. Zhao J, Li G, Wei J et al (2020) Ellagic acid induces cell cycle arrest and apoptosis via the TGF-β1/Smad3 signaling pathway in human colon cancer HCT.116 cells. Oncol Rep 44:768–776

    Article  CAS  PubMed  Google Scholar 

  41. Chouhan G, Islamuddin M, Want MY, Ozbak HA, Hemeg HA, Sahal D, Afrin F (2015) Leishmanicidal activity of Piper nigrum bioactive fractions is interceded via apoptosis in vitro and substantiated by Th1 immunostimulatory potential in vivo. Front Microbiol 6:1368

    Article  PubMed  PubMed Central  Google Scholar 

  42. Purkait B, Kumar A, Nandi N et al (2012) Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 56:1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaur S, Sachdeva H, Dhuria S et al (2010) Antileishmanial effect of cisplatin against murine visceral leishmaniasis. Parasitol Int 59:62–69

    Article  CAS  PubMed  Google Scholar 

  44. Kaur R, Kaur S (2020) Protective efficacy of Chlorophytum borivilianum root extract against murine visceral leishmaniasis by immunomodulating the host responses. J Ayurveda Integr Med 11:53–61

    Article  CAS  PubMed  Google Scholar 

  45. Soh PN, Witkowski B, Olagnier D et al (2009) In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob Agents Chemother 53:1100–1106

    Article  CAS  PubMed  Google Scholar 

  46. García M, Scull R, Satyal P et al (2017) Chemical characterization, antileishmanial activity, and cytotoxicity effects of the essential oil from leaves of Pluchea carolinensis (Jacq.) G. Don. (Asteraceae). Phyther Res 31:1419–1426

    Article  Google Scholar 

  47. Montrieux E, Perera WH, García M et al (2014) In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol Res 113:2925–2932

    Article  PubMed  Google Scholar 

  48. Ozbak HA, Hemeg HA, Afrin F et al (2019) Cinnamomum cassia exhibits antileishmanial activity against Leishmania donovani infection in vitro and in vivo. PLoS Negl Trop Dis 13:1–28

    Google Scholar 

  49. Adriaensen W, Dorlo TPC, Vanham G et al (2018) Immunomodulatory therapy of visceral leishmaniasis in human immunodeficiency virus-coinfected patients. Front Immunol 8:01943

    Article  Google Scholar 

  50. Rossi M, Fasel N (2018) How to master the host immune system? Leishmania parasites have the solutions! Int Immunol 30:103–111

    Article  CAS  PubMed  Google Scholar 

  51. Dubie T, Mohammed Y (2020) Review on the role of host immune response in protection and immunopathogenesis during cutaneous leishmaniasis infection. J Immunol Res 2020:2496713

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gupta G, Oghumu S, Satoskar AR (2013) Mechanisms of immune evasion in leishmaniasis. Adv Appl Microbiol 82:155–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaushal H, Bras-Gonçalves R, Negi NS et al (2014) Role of CD8+ T cells in protection against Leishmania donovani infection in healed visceral leishmaniasis individuals. BMC Infect Dis 14:8–14

    Article  Google Scholar 

  54. Stäger S, Rafati S (2012) CD8+ T cells in leishmania infections: friends or foes? Front Immunol 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chouhan G, Islamuddin M, Want MY et al (2015) Apoptosis mediated leishmanicidal activity of Azadirachta indica bioactive fractions is accompanied by Th1 immunostimulatory potential and therapeutic cure in vivo. Parasit Vectors 8:1–24

    Article  CAS  Google Scholar 

  56. Abid S, Khajuria A, Parvaiz Q et al (2012) Immunomodulatory studies of a bioactive fraction from the fruit of Prunus cerasus in BALB/c mice. Int Immunopharmacol 12:626–634

    Article  CAS  PubMed  Google Scholar 

  57. Ahmad W, Jantan I, Kumolosasi E, Bukhari SNA (2015) Immunostimulatory effects of the standardized extract of Tinospora crispa on innate immune responses in Wistar Kyoto rats. Drug Des Dev Ther 9:2961–2973

    CAS  Google Scholar 

  58. Awasthi A, Mathur RK, Saha B (2004) Immune response to leishmania infection. Indian J Med Res 119:238–258

    CAS  PubMed  Google Scholar 

  59. Bhattacharjee S, Gupta G, Bhattacharya P et al (2009) Quassin alters the immunological patterns of murine macrophages through generation of nitric oxide to exert antileishmanial activity. J Antimicrob Chemother 63:317–324

    Article  CAS  PubMed  Google Scholar 

  60. Ikeogu NM, Akaluka GN, Edechi CA et al (2020) Leishmania immunity: Advancing immunotherapy and vaccine development. Microorganisms 8:1–21

    Article  Google Scholar 

  61. Murray BHW, Nathan CF (1999) Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189:741–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bacellar O, D’Oliveira A, Jerônimo S, Carvalho EM (2000) IL-10 and IL-12 are the main regulatory cytokines in visceral leishmaniasis. Cytokine 12:1228–1231

    Article  CAS  PubMed  Google Scholar 

  63. Kolodziej H, Kiderlen AF (2005) Antileishmanial activity and immune modulatory effects of tannins and related compounds on leishmania parasitised RAW 264.7 cells. Phytochemistry 66:2056–2071

    Article  CAS  PubMed  Google Scholar 

  64. Islamuddin M, Chouhan G, Want MY et al (2016) Immunotherapeutic potential of eugenol emulsion in experimental visceral leishmaniasis. PLoS Negl Trop Dis 10:1–23

    Article  Google Scholar 

  65. Hosseini N, Abolhassani M (2011) Immunomodulatory properties of borage (Echium amoenum) on BALB/c mice infected with leishmania major. J Clin Immunol 31:465–471

    Article  PubMed  Google Scholar 

  66. Nurieva RI, Chung Y (2010) Understanding the development and function of T follicular helper cells. Cell Mol Immunol 7:190–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sachdeva H, Sehgal R, Kaur S (2013) Studies on the protective and immunomodulatory efficacy of Withania somnifera along with cisplatin against experimental visceral leishmaniasis. Parasitol Res 112:2269–2280

    Article  PubMed  Google Scholar 

  68. El HIA, Hashim FA, El TIA, Homeida M (1994) Liver morphology and function in visceral leishmaniasis (Kala-azar). J Hepatol 47:547–551

    Google Scholar 

  69. Sabra R, Branch RA (1990) Amphotericin B nephrotoxicity. Drug Saf 5:94–108

    Article  CAS  PubMed  Google Scholar 

  70. Abdelkader NF, Elyamany M, Gad AM et al (2020) Ellagic acid attenuates liver toxicity induced by valproic acid in rats. J Pharmacol Sci 143:23–29

    Article  CAS  PubMed  Google Scholar 

  71. Al-Kharusi N, Babiker HA, Al-Salam S et al (2013) Ellagic acid protects against cisplatin-induced nephrotoxicity in rats: a dose-dependent study. Eur Rev Med Pharmacol Sci 17:299–310

    CAS  PubMed  Google Scholar 

  72. Basu M, Das PK (2019) Role of reactive oxygen species in infection by the intracellular leishmania parasites. In: Chakraborti S, Chakraborti T, Chattopadhyay D, Shaha C (eds) Oxidative stress in microbial diseases. Springer, Singapore, pp 297–311. https://doi.org/10.1007/978-981-13-8763-0_16

    Chapter  Google Scholar 

  73. Roy S, Dutta D, Satyavarapu EM et al (2017) Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis. Sci Rep 7:1–16

    Article  Google Scholar 

  74. Ghosh K, Sharma G, Saha A et al (2013) Successful therapy of visceral leishmaniasis with curdlan involves T-helper 17 cytokines. J Infect Dis 207:1016–1025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the DST-Central Sophisticated Instrument Cell, Post Graduate Institute of Medical Education and Research (CSIC, PGIMER), Chandigarh for providing instrumentation facility.

Funding

This work was financially supported by University Grants Commission, New Delhi under the grants, UGC-JRF/SRF Fellowship (3643/NET-DEC.2012) and UGC-CAS (F.4-28/2015/CAS-II) (SAP-II).

Author information

Authors and Affiliations

Authors

Contributions

PK and DKG carried out the experimental work and wrote the manuscript. PK, DKG, and SK designed the study. SK supervised the experimental study and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sukhbir Kaur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

The ethical clearance was acquired from the Institutional Animal Ethics Committee (IAEC) of the University with IAEC no. PU/IAEC/S/14/147.

Consent for publication

All authors agreed the work to be published.

Additional information

Edited by Christian Bogdan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshav, P., Goyal, D.K. & Kaur, S. In vitro and in vivo therapeutic antileishmanial potential of ellagic acid against Leishmania donovani in murine model. Med Microbiol Immunol 212, 35–51 (2023). https://doi.org/10.1007/s00430-022-00754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-022-00754-5

Keywords

Navigation