Skip to main content
Log in

Molecular Dynamic Simulation of the Local Structure of Al–Cu Melts in Liquid and Supercooled States

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Atomic trajectories for Al–Cu alloys in the composition range from 0 to 28 at % of Cu are calculated by the method of classical molecular dynamics using the potential of an immersed atom. The configurations are calculated for isothermal holding for various temperatures both in the region of equilibrium melt and for a supercooled liquid. The analysis of thermodynamic and structural properties of the system is carried out. Melt density values are calculated. An increase in the Cu concentration in the Al melt leads to a nonlinear increase of the density values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. I. Zaitsev, R. Yu. Shimko, N. A. Arutyunyan, and S. F. Dunaev, Dokl. Phys. Chem. 414, 115 (2007). https://doi.org/10.1134/S0012501607050065

    Article  Google Scholar 

  2. V. E. Semenenko, A. A. Kasilov, and T. A. Kovalenko, Visn. Khark. Univ. Karazina, Ser. Fiz.: Yadro, Chast. Polya, No. 991, Part 1 (53), 90 (2012). https://periodicals.karazin.ua/eejp/article/view/13875/13061

    Google Scholar 

  3. S. Mudry, I. Shtablavyi, and J. Rybicki, Zh. Fiz. Doslidzh. 15 (1), 1601 (2011). http://nbuv.gov.ua/UJRN/jphd_2011_15_1_12

    Google Scholar 

  4. J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D. L. Price, D. Thiaudiere, and D. Zanghi, J. Non-Cryst. Solids 352, 4008 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.08.011

    Article  ADS  Google Scholar 

  5. B. Xiufang, P. Xuemin, Q. Xubo, and J. Minhua, Sci. China, Ser. E 45 (2), 113 (2002). http://dx.doi.org/10.1360/02ye9014

    Google Scholar 

  6. S. G. Men’shikova, A. L. Bel’tyukov, and V. I. Lad’yanov, Vestn. Kazan. Tekhnol. Univ. 17 (23), 140 (2014).

    Google Scholar 

  7. Mihua Sun and Xiufang Bian, Mater. Lett. 56, 620 (2002). http://dx.doi.org/10.1016/S0167-577X(02)00565-7

    Article  Google Scholar 

  8. N. Yu. Konstantinova, A. R. Kurochkin, A. V. Borisenko, V. V. Filippov, and P. S. Popel’, Rasplavy, No. 2, 157 (2016). https://doi.org/10.1134/S0036029516020075

    Google Scholar 

  9. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, S. Eckert, B. Willers, and K. Eigenfeld, Metall. Mater. Trans. A 39, 340 (2008). http://dx.doi.org/10.1007/s11661-008-9659-2

    Article  Google Scholar 

  10. D. K. Lykasov and O. A. Chikova, Rasplavy, No. 4, 31 (2007).

  11. V. M. Zamyatin, Ya. A. Nasyirov, N. I. Klassen, et al., Zh. Fiz. Khim. 60, 243 (1986).

    Google Scholar 

  12. M. Schick, J. Brillo, I. Egry, and B. Hallstedt, J. Mater. Sci. 47, 8145 (2012). https://doi.org/10.1007/s10853-012-6710-x

    Article  ADS  Google Scholar 

  13. A. R. Kurochkin, P. S. Popel’, D. A. Yagodin, A. V. Borisenko, and A. V. Okhapkin, High Temp. 51, 197 (2013). https://doi.org/10.1134/S0018151X13020120

    Article  Google Scholar 

  14. I. G. Brodova, P. S. Popel’, N. M. Barbin, and N. A. Vatolin, Melts as the Basis for the Formation of the Structure and Properties of Aluminum Alloys (UrO RAN, Yekaterinburg, 2005) [in Russian].

    Google Scholar 

  15. R. Hultgren, P. D. Desai, M. Gleiser, and D. T. Hawkins, Selected Values of the Thermodynamic Properties of Binary Alloys (Am. Soc. Test. Mater., Materials Park, Ohio, 1973).

    Google Scholar 

  16. A. T. Dinsdale and P. N. Quested, J. Mater. Sci. 39, 7221 (2004). https://doi.org/10.1023/B:JMSC.0000048735.50256.96

    Article  ADS  Google Scholar 

  17. Y. Kawai and Y. Shiraishi, Handbook of Physico-Chemical Properties at High Temperature, The 140th Committee of Japan Society for Promotion of Science (ISIJ, Tokyo, 1988).

    Google Scholar 

  18. R. M. Khusnutdinov and A. V. Mokshin, Bull. Russ. Acad. Sci.: Phys. 74, 640 (2010). https://doi.org/10.3103/S1062873810050163

    Article  Google Scholar 

  19. V. M. Zamyatin and B. A. Baum, Rasplavy, No. 3, 12 (2010).

  20. Xiufang Bian, Pan Xuemin, Qin Xubo, and Jiang Minhua, Sci. China, Ser. E 45, 113 (2002). http://dx.doi.org/10.1360/02ye9014

    Google Scholar 

  21. State Diagrams of Binary Metallic Systems, The Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian].

    Google Scholar 

  22. N. H. March and M. P. Tosi, Atomic Dynamics in Liquids (Dover, New York, 1976). https://doi.org/10.1007/978-1-349-00929-9

    Book  Google Scholar 

  23. H. R. Wendt and F. F. Abraham, Phys. Rev. Lett. 41, 1244 (1978). https://doi.org/10.1103/PhysRevLett.41.1244

    Article  ADS  Google Scholar 

  24. N. Tanaka, Phys. Rev. Lett. 80, 5750 (1998). https://doi.org/10.1103/PhysRevLett.80.5750

    Article  ADS  Google Scholar 

  25. J. Cai and Y. Y. Ye, Phys. Rev. B 54, 8398 (1996). https://doi.org/10.1103/PhysRevB.54.8398

    Article  ADS  Google Scholar 

  26. R. M. Khusnutdinoff, A. V. Mokshin, S. G. Menshikova, A. L. Beltyukov, and V. I. Ladyanov, J. Exp. Theor. Phys. 122, 859 (2016). https://doi.org/10.1134/s1063776116040166

    Article  ADS  Google Scholar 

  27. A. L. Bel’tyukov and V. I. Lad’yanov, Instrum. Exp. Tech. 51, 304 (2008). https://doi.org/10.1007/s10786-008-2027-z

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Dr. Sci. (Phys.–Math.) R.E. Ryltsev for help with the study.

Funding

The study was carried out as a part of the state task of the Ministry of Education and Science of the Russian Federation (Project no. 121030100001-3).

Computer simulation was performed using the resources of the “Uran” cluster on the basis of the Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg (https://parallel.uran.ru/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Menshikova.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menshikova, S.G. Molecular Dynamic Simulation of the Local Structure of Al–Cu Melts in Liquid and Supercooled States. Phys. Solid State 64, 379–384 (2022). https://doi.org/10.1134/S1063783422080054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422080054

Keywords:

Navigation