Skip to main content
Log in

Disjoint strong transitivity of composition operators

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

A Furstenberg family \(\mathcal {F}\) is a collection of infinite subsets of the set of positive integers such that if \(A\subset B\) and \(A\in \mathcal {F}\), then \(B\in \mathcal {F}\). For a Furstenberg family \(\mathcal {F}\), finitely many operators \(T_1,...,T_N\) acting on a common topological vector space X are said to be disjoint \(\mathcal {F}\)-transitive if for every non-empty open subsets \(U_0,...,U_N\) of X the set \(\{n\in \mathbb {N}:\ U_0 \cap T_1^{-n}(U_1)\cap ...\cap T_N^{-n}(U_N)\ne \emptyset \}\) belongs to \(\mathcal {F}\). In this paper, depending on the topological properties of \(\Omega\), we characterize the disjoint \(\mathcal {F}\)-transitivity of \(N\ge 2\) composition operators \(C_{\phi _1},\ldots ,C_{\phi _N}\) acting on the space \(H(\Omega )\) of holomorphic maps on a domain \(\Omega \subset \mathbb {C}\) by establishing a necessary and sufficient condition in terms of their symbols \(\phi _1,...,\phi _N\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amouch, M., Benchiheb, O.: On cyclic sets of operators. Rendiconti del Circolo Matematico di Palermo Series 2 68(3), 521–529 (2019)

    Article  MathSciNet  Google Scholar 

  2. Amouch, M., Benchiheb, O.: On linear dynamics of sets of operators. Turk. J. Math. 43(1), 402–411 (2019)

    Article  MathSciNet  Google Scholar 

  3. Amouch, M., Benchiheb, O.: Diskcyclicity of sets of operators and applications. Acta Math. Sin. Engl. Ser. 36, 1203–1220 (2020)

    Article  MathSciNet  Google Scholar 

  4. Amouch, M., Benchiheb, O.: Some versions of supercyclicity for a set of operators. Filomat 35(5), 1619–1627 (2021)

    Article  MathSciNet  Google Scholar 

  5. Amouch, M., Karim, N.: Strong transitivity of composition operators. Acta Math. Hungar. 164, 458–469 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bayart, F., Matheron, É.: Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces. J. Funct. Anal. 250(2), 426–441 (2007)

    Article  MathSciNet  Google Scholar 

  7. Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  8. Bayart, F., Darji, U.B., Peris, B.: Topological transitivity and mixing of composition operators. J. Math. Anal. Appl. 465(1), 125–139 (2018)

    Article  MathSciNet  Google Scholar 

  9. Bernal-González, L., Montes-Rodríguez, A.: Universal functions for composition operators. Complex Var. Elliptic Equ. 27(1), 47–56 (1995)

    MathSciNet  Google Scholar 

  10. Bernal-González, L., Grosse-Erdmann, K.G.: The hypercyclicity criterion for sequences of operators. Stud. Math. 157, 17–32 (2003)

    Article  MathSciNet  Google Scholar 

  11. Bernal-González, L.: Disjoint hypercyclic operators. Stud. Math. 182, 113–131 (2007)

    Article  MathSciNet  Google Scholar 

  12. Bès, J., Peris, A.: Disjointness in hypercyclicity. J. Math. Anal. Appl. 336(1), 297–315 (2007)

    Article  MathSciNet  Google Scholar 

  13. Bès, J., Martin, Ö., Peris, A.: Disjoint hypercyclic linear fractional composition operators. J. Math. Anal. Appl. 381(2), 843–856 (2011)

    Article  MathSciNet  Google Scholar 

  14. Bès, J., Martin, Ö.: Compositional disjoint hypercyclicity equals disjoint supercyclicity. Houst. J. Math. 38(4), 1149–1163 (2012)

    MathSciNet  Google Scholar 

  15. Bès, J.: Dynamics of composition operators with holomorphic symbol. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A. Matematicas 107(2), 437–449 (2013)

    Article  MathSciNet  Google Scholar 

  16. Bès, J.: Dynamics of weighted composition operators. Complex Anal. Oper. Theory 8(1), 159–176 (2014)

    Article  MathSciNet  Google Scholar 

  17. Bès, J., Menet, Q., Peris, A., Puig, Y.: Strong transitivity properties for operators. J. Differ. Equ. 266(2–3), 1313–1337 (2019)

    Article  MathSciNet  Google Scholar 

  18. Birkhoff, G.D.: Démonstration d’un théorème élémentaire sur les fonctions entières. CR Acad Sci. Paris Ser. I Math. 189, 473–475 (1929)

    Google Scholar 

  19. De La Rosa, M., Read, C.: A hypercyclic operator whose direct sum \(T\oplus T\) is not hypercyclic. J. Oper. Theory 61(2), 369-380 (2009)

    Google Scholar 

  20. Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1(1), 1–49 (1967)

    Article  MathSciNet  Google Scholar 

  21. Grivaux, S.: Hypercyclic operators, mixing operators, and the bounded steps problem. J. Oper. Theory 54(1), 147-168 (2005)

    MathSciNet  Google Scholar 

  22. Grosse-Erdmann, K.G.: Universal families and hypercyclic operators. Bull. Am. Math. Soc. 36(3), 345–381 (1999)

    Article  MathSciNet  Google Scholar 

  23. Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. d’Analyse Math. 107(1), 355 (2009)

    Article  MathSciNet  Google Scholar 

  24. Grosse-Erdmann, K.G.: Peris A. Linear Chaos (Universitext). Springer, London (2011)

    Book  Google Scholar 

  25. Kamali, Z., Yousefi, B.: Disjoint hypercyclicity of weighted composition operators. Proc.-Math. Sci. 125(4), 559–567 (2015)

    Article  MathSciNet  Google Scholar 

  26. Kostic, M.: \({\cal{F} }\)-hypercyclic and disjoint \({\cal{F} }\)-hypercyclic properties of binary relations over topological spaces. Math. Bohem. 145(2020), 337–359 (2020)

    Article  MathSciNet  Google Scholar 

  27. Kostic, M.: \({\cal{F} }\)-hypercyclic extensions and disjoint \({\cal{F} }\)-hypercyclic extensions of binary relations over topological spaces. Funct. Anal. Approx. Comput. 10, 41–52 (2018)

    MathSciNet  Google Scholar 

  28. Montes-Rodríguez, A.: A Birkhoff theorem for Riemann surfaces. Rocky Mt. J. Math. 28(2), 663–693 (1998)

    Article  MathSciNet  Google Scholar 

  29. Peris, A., Saldivia, L.: Syndetically hypercyclic operators. Integr. Equ. Oper. Theory 51(2), 275–281 (2005)

    Article  MathSciNet  Google Scholar 

  30. Remmert, R.: Funktionentheorie. Springer-Verlag, Berlin (1991)

    Google Scholar 

  31. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    Google Scholar 

  32. Salas, H.N.: Dual disjoint hypercyclic operators. J. Math. Anal. Appl. 374(1), 106–117 (2011)

    Article  MathSciNet  Google Scholar 

  33. Shkarin, S.: A short proof of existence of disjoint hypercyclic operators. J. Math. Anal. Appl. 367(2), 713–715 (2010)

    Article  MathSciNet  Google Scholar 

  34. Wang, Y., Zhou, Z.H.: Disjoint hypercyclic weighted pseudo-shifts on Banach sequence spaces. Collectanea Math. 69(3), 437–449 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to the anonymous referees for their careful reading, critical comments and valuable suggestions that contribute significantly to improving the manuscript during the revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otmane Benchiheb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karim, N., Benchiheb, O. & Amouch, M. Disjoint strong transitivity of composition operators. Collect. Math. 75, 171–187 (2024). https://doi.org/10.1007/s13348-022-00383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-022-00383-4

Keywords

Mathematics Subject Classification

Navigation