Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 1, 2022

Synthesis, structure, and photocatalytic properties of a two-dimensional uranyl organic framework

  • Yuning Meng , Donghui Liu , Qiaofa Lan , Ziyu Xie , Fei Niu , Xiaolin Zhang and Youming Yang EMAIL logo

Abstract

A two-dimensional uranyl organic framework (UOF) UO2(L)(DMA) (1) (H2L = 2-aminoisophthalic acid, DMA = N, N-dimethylacetamide) has been solvothermally synthesized and characterized thoroughly by elemental analysis, infrared spectroscopy, single-crystal X-ray diffraction, solid fluorescence, powder X-ray diffraction, thermogravimetric analysis, and UV–visible spectroscopy. Furthermore, the degradation efficiencies of UOF 1 to organic dye methylene blue (MB) and rhodamine B (RhB) are 93.2 and 86.5% under irradiation of visible light which indicates that UOF 1 has remarkable photocatalytic activity. UOF 1 also displayed a certain selectivity for mixed dyes of MB & RhB.


Corresponding author: Youming Yang, Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China, E-mail:

Award Identifier / Grant number: 2020YFC1909001-2

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by the National Key Research and Development Program of China (2020YFC1909001-2).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zhang, M. X., Liang, C. Y., Cheng, G. D., Chen, J. C., Wang, Y. M., He, L. W., Cheng, L. W., Gong, S. C., Zhang, D., Li, J., Hu, S. X., Diwu, J., Wu, G. Z., Wang, Y. X., Chai, Z. F., Wang, S. Intrinsic semiconducting behavior in a large mixed-valent uranium-(V/VI) cluster. Angew. Chem. Int. Ed. 2021, 60, 9886; https://doi.org/10.1002/ange.202017298.Search in Google Scholar

2. Wang, Y. X., Yin, X. M., Liu, W., Xie, J., Chen, J. F., Silver, M. A., Sheng, D. P., Chen, L. H., Diwu, J., Liu, N., Chai, Z. F., Albrecht-Schmitt, T. E., Wang, S. A. Emergence of uranium as a distinct metal center for building intrinsic X-ray scintillators. Angew. Chem. Int. Ed. 2018, 130, 8009; https://doi.org/10.1002/ange.201802865.Search in Google Scholar

3. Xie, J., Wang, Y. X., Liu, W., Yin, X. M., Chen, L. H., Zou, Y. M., Diwu, J., Chai, Z. F., Albrecht-Schmitt, T. E., Liu, G. K., Wang, S. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework. Angew. Chem. Int. Ed. 2017, 129, 1; https://doi.org/10.1002/ange.201700919.Search in Google Scholar

4. Gui, D. X., Duan, W. C., Shu, J., Zhai, F. W., Wang, N., Wang, X. X., Xie, J., Li, H., Chen, L. H., Diwu, J., Chai, Z. F., Wang, S. Persistent superprotonic conductivity in the order of 10−1 S·cm−1 achieved through thermally induced structural transformation of a uranyl coordination polymer. CCS Chem 2019, 1, 197; https://doi.org/10.31635/ccschem.019.20190004.Search in Google Scholar

5. Liu, C., Yang, X. X., Niu, S., Yi, X. Y., Pan, Q. J. Occurrence of polyoxouranium motifs in uranyl organic networks constructed by using silicon-centered carboxylate linkers: structures, spectroscopy and computation. Dalton Trans. 2020, 49, 4155; https://doi.org/10.1039/d0dt00379d.Search in Google Scholar PubMed

6. Yu, Z. T., Liao, Z. L., Jiang, Y. S., Li, G. H., Li, G. D., Chen, J. S. Construction of a microporous inorganic–organic hybrid compound with uranyl units. Chem. Commun. 2004, 40, 1814. https://doi.org/10.1039/b406019a.Search in Google Scholar PubMed

7. Zhang, X., Li, P., Krzyaniak, M., Knapp, J., Wasielewski, M. R., Farha, O. K. Stabilization of photocatalytically active uranyl species in a Uranyl−Organic framework for heterogeneous alkane fluorination driven by visible light. Inorg. Chem. 2020, 59, 16795; https://doi.org/10.1021/acs.inorgchem.0c00850.Search in Google Scholar PubMed

8. Xu, W., Si, Z. X., Xie, M., Zhou, L. X., Zheng, Y. Q. Experimental and theoretical approaches to three uranyl coordination polymers constructed by phthalic acid and N,N′-Donor bridging ligands: crystal structures, luminescence, and photocatalytic degradation of tetracycline hydrochloride. Cryst. Growth Des. 2017, 17, 2147; https://doi.org/10.1021/acs.cgd.7b00097.Search in Google Scholar

9. Gao, X., Wang, C., Shi, Z. F., Song, J., Bai, F. Y., Wang, J. X., Xing, Y. H. A family of uranyl-aromatic dicarboxylate(pht-ipa-tpa-) framework hybrid materials: photoluminescence, surface photovoltage and dye adsorption. Dalton Trans. 2015, 44, 11562; https://doi.org/10.1039/c5dt01470k.Search in Google Scholar PubMed

10. Wang, X. M., Wang, C., Zhang, N., Liu, D. Q., Wang, Y., Bai, F. Y. Multifunctional inorganic–organic U-MOF materials with Nitrogen heterocyclic carboxylate: synthesis, structure and properties. ChemistrySelect 2020, 5, 8625; https://doi.org/10.1002/slct.201904850.Search in Google Scholar

11. Wang, L., Tu, B. T., Xu, W., Fu, Y., Zheng, Y. Q. Uranyl organic framework as a highly selective and sensitive turn-on and turn-off luminescent sensor for dual functional detection arginine and MnO4−. Inorg. Chem. 2020, 59, 5004; https://doi.org/10.1021/acs.inorgchem.0c00236.Search in Google Scholar PubMed

12. Liu, W., Xie, J., Zhang, L. M., Silver, M. A., Wang, S. A. A hydrolytically stable uranyl organic framework for highly sensitive and selective detection of Fe3+ in aqueous media. Dalton Trans. 2018, 47, 649; https://doi.org/10.1039/c7dt04365a.Search in Google Scholar PubMed

13. Wu, D., Mo, X. F., He, P., Li, H. R., Yi, X. Y., Liu, C. 3D uranyl organic frameworks supported by rigid octadentate carboxylate ligand: synthesis, structure diversity, and luminescence properties. Chem. Eur J. 2021, 27, 1; https://doi.org/10.1002/chem.202100099.Search in Google Scholar PubMed

14. Cheng, L. W., Liang, C. Y., Liu, W., Wang, Y. X., Chen, B., Zhang, H. L., Wang, Y. L., Chai, Z. F., Wang, S. Three-dimensional polycatenation of a uranium-based metal-organic cage: structural complexity and radiation detection. J. Am. Chem. Soc. 2020, 142, 16218; https://doi.org/10.1021/jacs.0c08117.Search in Google Scholar PubMed

15. Dai, Y., Chai, H. M., Zhang, R. X., Min, J. A., Wang, Z., Zhang, M., Zhang, Y., Feng, J., Zhang, C., Wang, J. A series of uranium-organic frameworks: crucial role of the protonation ability of auxiliary ligands. Inorg. Chem. Commun. 2020, 111, 107628; https://doi.org/10.1016/j.inoche.2019.107628.Search in Google Scholar

16. Xu, X. T., Hou, Y. N., Wei, S. Y., Zhang, X. X., Bai, F. Y., Sun, L. X., Shi, Z., Xing, Y. H. UO22+-amino hybrid materials: structural variation and photocatalysis propertie. CrystEngComm 2015, 17, 642; https://doi.org/10.1039/c4ce01473a.Search in Google Scholar

17. Yu, Z. T., Liao, Z. L., Jiang, Y. S., Li, G. H., Chen, J. S. Water-insoluble Ag–U-organic assemblies with photocatalytic activity. Chem. Eur J. 2005, 11, 2642; https://doi.org/10.1002/chem.200401189.Search in Google Scholar PubMed

18. Zhai, X. S., Zhu, W. G., Xu, W., Huang, Y. J., Zheng, Y. Q. A family of 3D UO22+-5-X-1,3-dicarboxylate (X = –H, –NO2, –NH2, –OH) hybrid materials: structural relevance with variation of substituent groups and photochemical properties. CrystEngComm 2015, 17, 2376; https://doi.org/10.1039/c4ce02307b.Search in Google Scholar

19. Cantos, P. M., Cahill, C. L. A family of UO22+-5-nitro-1,3-dicarboxylate hybrid materials: structural variation as a function of pH and structure directing species. Cryst. Growth Des. 2014, 14, 3044; https://doi.org/10.1021/cg500304d.Search in Google Scholar

20. Gao, X., Wang, C., Shi, Z. F., Song, J., Bai, F. Y., Wang, J. X., Xing, Y. H. A family of uranyl-aromatic dicarboxylate (pht-ipa-tpa-) framework hybrid materials: photoluminescent, surface photovoltage and dye adsorption. Dalton Trans. 2015, 25, 11562; https://doi.org/10.1039/c5dt01470k.Search in Google Scholar PubMed

21. Saint, Version 8.37a; Bruker AXS: Madison, WI, 2015.Search in Google Scholar

22. Sheldrick, G. M. Sadabs, Program for Siemens Area Detector Absorption Corrections; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

23. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

24. Sheldrick, G. M. Shelxl97, Program for Crystal Structure Solution and Refinement; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

25. Bai, Z. L., Wang, Y. L., Li, Y. X., Liu, W., Chen, L. H., Sheng, D. P., Diwu, J., Chai, Z. F., Albrecht-Schmitt, T. E., Wang, S. A. First cationic uranyl–organic framework with anion-exchange capabilities. Inorg. Chem. 2016, 55, 6358; https://doi.org/10.1021/acs.inorgchem.6b00930.Search in Google Scholar PubMed

26. Yang, W. T., Dang, S., Wang, H., Tian, T., Pan, Q. J., Sun, Z. M. Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono- and polycarboxylic acids. Inorg. Chem. 2013, 52, 12394; https://doi.org/10.1021/ic4012444.Search in Google Scholar PubMed

27. Brachmann, A., Geipel, G., Bernhard, G., Nitsche, H. Study of uranyl(VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 2002, 90, 147; https://doi.org/10.1524/ract.2002.90.3_2002.147.Search in Google Scholar

28. Wu, D., Mo, X. F., He, P., Li, H. R., Yi, X. Y., Liu, C. 3D uranyl organic frameworks supported by rigid octadentate carboxylate ligand synthesis, structure diversity, and luminescence properties. Chem. Eur J. 2021, 27, 10313; https://doi.org/10.1002/chem.202100099.Search in Google Scholar PubMed

29. Guan, Q. L., Gao, X., Liu, J., Wei, W. J., Xing, Y. H., Bai, F. Y. UO22+-polycarboxylate heterometallic complexes: structure, spectra, and photocatalytic properties. J. Coord. Chem. 2016, 6, 1026; https://doi.org/10.1080/00958972.2016.1150458.Search in Google Scholar

30. Si, Z. X., Xu, W., Zheng, Y. Q. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer. J. Solid State Chem. 2016, 239, 139; https://doi.org/10.1016/j.jssc.2016.04.024.Search in Google Scholar

31. Azam, M., Velmurugan, G., Wabaidur, S. M., Trzesowska-Kruszynska, A., Kruszynski, R., Al-Resayes, S. I., Al-Othman, Z. A., Venuvanalingam, P. Structural elucidation and physicochemical properties of mononuclear uranyl(VI) complexes incorporating dianionic units. Sci. Rep. 2016, 6, 32898; https://doi.org/10.1038/srep32898.Search in Google Scholar PubMed PubMed Central

32. Gomez, G. E., Onna, D., D’vries, R. F., Barja, B. C., Ellena, J., Narda, G. E., Soler-Illia, G. J. A. A. Chain-like uranyl-coordination polymer as a bright green light emitter for sensing and sunlight driven photocatalysis. J. Mater. Chem. C 2020, 8, 11102; https://doi.org/10.1039/d0tc02623a.Search in Google Scholar

33. Tong, X. L., Wang, S., Zuo, J., Ge, Y. C., Gao, Q., Liu, S. J., Ding, J. H., Liu, F., Luo, J. Q., Xiong, J. B. Two 2D uranyl coordination complexes showing effective photocatalytic degradation of Rhodamine B and mechanism study. Chin. Chem. Lett. 2021, 32, 604; https://doi.org/10.1016/j.cclet.2020.11.044.Search in Google Scholar

34. Liang, L. L., Hu, Y. Q., Zhao, J. S. Two uranium coordination polymers constructed by a polycarboxylic acid: structural variation, photoluminescent and photocatalysis properties. J. Solid State Chem. 2020, 282, 121085; https://doi.org/10.1016/j.jssc.2019.121085.Search in Google Scholar

35. Ghosh, S., Srivastava, A. K., Pal, S. Dihydroxo-bridged diuranyl(VI) complexes with 2-((2-(6-chloropyridazin-3-yl)hydrazono)methyl)-4-R-phenols: structural insights and visible light driven photocatalytic activities. New J. Chem. 2019, 43, 970; https://doi.org/10.1039/c8nj05038d.Search in Google Scholar

36. Zhang, Q. C., Jin, B., Peng, R. F., Wang, X. F., Shi, Z. T., Liu, Q. Q., Lei, S., Liang, H. Investigation on the synthesis and photocatalytic property of uranyl complexes of the β-diketonates biscatecholamide ligand. Int. J. Photoenergy 2017, 47, 12; https://doi.org/10.1155/2017/8041647.Search in Google Scholar

37. Meng, Y. N., Niu, F., Zhang, X. L., Liu, D. H., Lan, Q. F., Yang, Y. M. Synthesis, crystal structure, luminescent, and photocatalytic properties of a uranyl(VI)-organic framework based on tripodal flexible zwitterionic ligand. Indian J. Chem. 2021, 60A, 1409.10.56042/ijca.v60i11.54173Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0012).


Received: 2021-12-06
Accepted: 2022-10-13
Published Online: 2022-12-01
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0012/html
Scroll to top button