Skip to main content
Log in

The Sojourn Time Problem for a \(p\)-Adic Random Walk and its Applications

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

We consider the problem of the distribution of the sojourn time in a compact set \(\mathbb{Z}_{p}\) in the case of a \(p\)-adic random walk. We rely on the results of our previous studies of the distribution of the first return time for a \(p\)-adic random walk and the results of Takacs on the study of the sojourn time problem for a wide class of random processes. For a \(p\)-adic random walk we find the mean sojourn time of the trajectory in \(\mathbb{Z}_{p}\) and the asymptotics as \(t\rightarrow\infty\) of arbitrary moments of the distribution of the sojourn time in \(\mathbb{Z}_{p}\). We also discuss some possible applications of our results to the modeling of relaxation processes related to the conformational dynamics of protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Takacs, “On certain sojourn time problems in the theory of stochastic processes,” Acta Math. Acad. Sci. Hung. 8 (1-2), 169–191 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Takacs, “On a sojourn time problem,” Theory Prob. Appl. 3 (1), 58–65 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Takacs, “Sojourn time problems,” Annals Prob. 2, 420–431 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. E. Barlow and F. Proschan, Mathematical Theory of Reliability, Society for Industrial and Applied Mathematics (Philadelphia, 1996).

    Book  MATH  Google Scholar 

  5. M. Iosifescu, Finite Markov Processes and their Applications (Courier Corporation, 2014).

    Google Scholar 

  6. F. Grabski, Semi-Markov Processes: Applications in System Reliability and Maintenance 599 (Elsevier, Amsterdam, 2015).

    MATH  Google Scholar 

  7. R. Rammal, G. Toulouse, M. A. Virasoro, “Ultrametricity for physicists,” Rev. Mod. Phys. 58 (3), 765–788 (1986).

    Article  MathSciNet  Google Scholar 

  8. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics (World Sci. Publ., Singapore, 1994).

    Book  MATH  Google Scholar 

  9. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I.V. Volovich, “On \(p\)-adic mathematical physics,” \(p\)-Adic Num. Ultrametr. Anal. Appl. 1 (1), 1–17, (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich and E. I. Zelenov, “\(p\)-Adic mathematical physics: The first 30 years,” \(p\)-Adic Num. Ultrametr. Anal. Appl. 9 (2), 87–121, (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and N. Ž. Mišić, “\(p\)-Adic mathematics and theoretical biology,” Biosystems 199, 104288–104288 (2021).

    Article  Google Scholar 

  12. V. A. Avetisov, A. Kh. Bikulov and S. V. Kozyrev, “Application of \(p\)-adic analysis to models of spontaneous breaking of replica symmetry,” J. Phys. A: Math. Gen. 32 (50), 8785–8791 (1999).

    Article  MATH  Google Scholar 

  13. V. A. Avetisov, A. Kh. Bikulov, S. V. Kozyrev and V. A. Osipov, “\(p\)-Adic Models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A: Math. Gen. 35 (2), 177–189 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. A. Avetisov, A. Kh. Bikulov and V. A. Osipov, “\(p\)-Adic description of characteristic relaxation in complex systems,” J. Phys. A: Math. Gen. 36 (15), 4239–4246 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. A. Avetisov, A. Kh. Bikulov and V. A. Osipov, “\(p\)-Adic models for ultrametric diffusion in conformational dynamics of macromolecules,” Tr. Mat. Inst. Steklova 245, 55–64 (2004).

    MathSciNet  MATH  Google Scholar 

  16. V. A. Avetisov and A. Kh. Bikulov, “Protein ultrametricity and spectral diffusion in deeply frozen proteins,” Biophys. Rev. Lett. 3, 387–396 (2008).

    Article  Google Scholar 

  17. V. A. Avetisov, A. Kh. Bikulov and A. P. Zubarev, “First passage time distribution and number of returns for ultrametric random walk,” J. Phys. A: Math. Gen. 42 (8), 85005–85021 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. A. Avetisov, A. Kh. Bikulov and A. P. Zubarev, “Mathematical modeling of molecular “nano-machines”,” Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki 1 (22), 9–15 (2011).

    MATH  Google Scholar 

  19. V. A. Avetisov, A. Kh. Bikulov and A. P. Zubarev, “Ultrametricity as a basis for organization of protein molecules: CO binding to myoglobin,” Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki 1 (30), 315–325 (2013).

    Google Scholar 

  20. A. Kh. Bikulov and A. P. Zubarev, “Ultrametric theory of conformational dynamics of protein molecules in a functional state and the description of experiments on the kinetics of CO binding to myoglobin,” Phys. A: Stat. Mech. Appl. 583, 126280–126280 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Takacs, “On limiting distributions concerning a sojourn time problem,” Acta Math. Acad. Sci. Hung. 8 (3-4), 279–294 (1957).

    Article  MATH  Google Scholar 

  22. D. Th. Leeson and D. A. Wiersma, “Looking into the energy landscape off myoglobin,” Nature Struct. Biol. 2, 848–851 (1995).

    Article  Google Scholar 

  23. V. V. Ponkratov, J. Friedrich, K. M. Vanderkooi, A. L. Burin and Yu. A. Berlin, “Physics of protein at low temperature,” J. Low. Temp. Phys. 3, 289–317 (2006).

    Google Scholar 

  24. J. Schlichter, J. Friedrich, L. Herenyi and J. Fidy, “Protein dynamics at low temperatures,” J. Chem. Phys. 112 (6), 3045–3050 (2000).

    Article  Google Scholar 

  25. J. Schlichter, K.-D. Fritsch, J. Friedrich and J. M. Vanderkooi, “Conformational dynamics of a low temperature protein: Free base cytochrome-c,” J. Chem. Phys. 110, 3229–3234 (1999).

    Article  Google Scholar 

  26. S. C. Lim and S. V. Muniandy, “Self-similar Gaussian processes for modeling anomalous diffusion,” Phys. Rev. E 66 (2), 021114.1–021114.14 (2002).

    Article  Google Scholar 

  27. V. V. Uchaikin, “Self-similar anomalous diffusion and Levy-stable laws,” Phys. Usp. 46, 821–849 (2003).

    Article  Google Scholar 

Download references

Funding

The study was supported in part by the Ministry of Education and Science of Russia by State assignment to educational and research institutions under project FSSS-2020-0014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Kh. Bikulov or A. P. Zubarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikulov, A.K., Zubarev, A.P. The Sojourn Time Problem for a \(p\)-Adic Random Walk and its Applications. P-Adic Num Ultrametr Anal Appl 14, 265–278 (2022). https://doi.org/10.1134/S207004662204001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004662204001X

Keywords

Navigation