Skip to main content
Log in

Acinetobacter baumannii reinforces the pathogenesis by promoting IL-17 production in a mouse pneumonia model

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Interleukin-17 (IL-17) is involved in host defense against bacterial infection. Little is known about the role of IL-17 in A. baumannii-infected pneumonia. Our objective was to investigate the role of IL-17 in pulmonary A. baumannii infection in a mouse model. We infected C57BL/6 mice intra-tracheally (i.t.) with A. baumannii to establish pneumonia model and found A. baumannii infection elevated IL-17 expression in lungs. IL-17-deficient (Il17−/−) mice were resistant to pulmonary A. baumannii infection, showing improved mice survival, reduced bacteria burdens, and alleviated lung inflammation. Further, treatment of A. baumannii-infected Il17−/− mice with IL-17 exacerbated the severity of pneumonia. These data suggest a pathogenic role of IL-17 in pulmonary A. baumannii infection. Further, the infiltration and phagocytic function of neutrophils in broncho-alveolar lavage fluid were detected by flow cytometry. The results showed that Il17−/− mice had increased neutrophil infiltration and enhanced phagocytosis in neutrophils at the early time of infection. Treatment of mice with IL-17 suppressed phagocytic function of neutrophils. All data suggest that IL-17 promotes susceptibility of mice to pulmonary A. baumannii infection by suppressing neutrophil phagocytosis at early time of infection. Targeting IL-17 might be a potential therapeutic strategy in controlling the outcome of A. baumannii pneumonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

RNAseq data of innate immune response of lung to A. baumannii infection were deposited in GEO database with the accession number GSE143597.

References

  1. McConnell M, Actis L, Pachón J (2013) Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 37(2):130–155

    Article  CAS  PubMed  Google Scholar 

  2. Gallagher P, Baker S (2020) Developing new therapeutic approaches for treating infections caused by multi-drug resistant Acinetobacter baumannii: Acinetobacter baumannii therapeutics. J Infect 81(6):857–861

    Article  CAS  PubMed  Google Scholar 

  3. Tacconelli E, & Magrini N (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHOpdf?ua=1

  4. Mohd Sazlly Lim S, Zainal Abidin A, Liew SM, Roberts JA, Sime FB (2019)The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. J Infect 79(6): 593–600

  5. Chen W (2020) Host Innate Immune Responses to Acinetobacter baumannii Infection. Front Cell Infect Microbiol 10:486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kelly M, Kolls J, Happel K et al (2005) Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun 73(1):617–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ye P, Rodriguez F, Kanaly S et al (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194(4):519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen K, Eddens T, Trevejo-Nunez G, et al (2016) IL-17 receptor signaling in the lung epithelium is required for mucosal chemokine gradients and pulmonary host defense against. Cell Host Microbe 20(5): 596–605

  9. Bayes H, Ritchie N, Evans T (2016) Interleukin-17 is required for control of chronic lung infection caused by Pseudomonas aeruginosa. Infect Immun 84(12):3507–3516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murakami T, Hatano S, Yamada H, Iwakura Y, Yoshikai Y (2016) Two types of interleukin 17A-producing γδ T cells in protection against pulmonary infection with Klebsiella pneumoniae. J Infect Dis 214(11):1752–1761

    Article  CAS  PubMed  Google Scholar 

  11. Way EE, Chen K, Kolls JK (2013) Dysregulation in lung immunity: The protective and pathologic Th17 response in infection. Eur J Immunol 43(12):3116–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wonnenberg B, Jungnickel C, Honecker A, et al (2016) IL-17A attracts inflammatory cells in murine lung infection with P. aeruginosa. Innate Immunity 22(8): 620–625

  13. Murdock BJ, Falkowski NR, Shreiner AB et al (2012) Interleukin-17 drives pulmonary eosinophilia following repeated exposure to Aspergillus fumigatus conidia. Infect Immun 80(4):1424–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi Y, Liu XF, Zhuang Y et al (2010) Helicobacter pylori-induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. J Immunol 184(9):5121–5129

    Article  CAS  PubMed  Google Scholar 

  15. Khader SA, Cooper AM (2008) IL-23 and IL-17 in tuberculosis. Cytokine 41(2):79–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li C, Yang P, Sun Y et al (2012) IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza A (H1N1) virus. Cell Res 22(3):528–538

    Article  CAS  PubMed  Google Scholar 

  17. Song HW, Yang C, Liu W, Liu XW, Liu Z, Gao F (2017) Interleukin-17A plays the same role on mice acute lung injury respectively induced by lipopolysaccharide and paraquat. Inflammation 40(5):1509–1519

    Article  CAS  PubMed  Google Scholar 

  18. Muir R, Osbourn M, Dubois A et al (2016) Innate lymphoid cells are the predominant source of IL-17A during the early pathogenesis of acute respiratory distress syndrome. Am J Respir Crit Care Med 193(4):407–416

    Article  CAS  PubMed  Google Scholar 

  19. Liu M, Lu B, Fan H et al (2021) Heightened local Th17 cell inflammation is associated with severe community-acquired pneumonia in children under the age of 1 year. Mediators Inflamm 2021:9955168

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mikacenic C, Hansen EE, Radella F, Gharib SA, Stapleton RD, Wurfel MM (2016) Interleukin-17A is associated With alveolar inflammation and poor outcomes in acute respiratory distress syndrome. Crit Care Med 44(3):496–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li TJ, Zhao LL, Qiu J, Zhang HY, Bai GX, Chen L (2017) Interleukin-17 antagonist attenuates lung inflammation through inhibition of the ERK1/2 and NF-kappaB pathway in LPS-induced acute lung injury. Mol Med Rep 16(2):2225–2232

    Article  CAS  PubMed  Google Scholar 

  22. Breslow J, Meissler J, Hartzell R et al (2011) Innate immune responses to systemic Acinetobacter baumannii infection in mice: neutrophils, but not interleukin-17, mediate host resistance. Infect Immun 79(8):3317–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng X, Gu H, Peng L et al (2020) Transcriptome profiling of lung innate immune responses potentially associated with the pathogenesis of Acinetobacter baumannii acute lethal pneumonia. Front Immunol 11:708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng X, Gu H, Peng L et al (2020) Acinetobacter baumannii transcriptome profiling of lung innate immune responses potentially associated with the pathogenesis of acute lethal pneumonia. Front Immunol 11:708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harris G, Kuo Lee R, Lam CK et al (2013) A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrob Agents Chemother 57(8):3601–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rayamajhi M, Redente EF, Condon TV, Gonzalez-Juarrero M, Riches DW, Lenz LL (2011) Non-surgical intratracheal instillation of mice with analysis of lungs and lung draining lymph nodes by flow cytometry. J Vis Exp 2(51):2702

  28. Yan Z, Yang J, Hu R, Hu X, Chen K (2016) Acinetobacter baumannii infection and IL-17 mediated immunity. Mediators Inflamm 2016:9834020

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lin L, Tan B, Pantapalangkoor P et al (2013) Acinetobacter baumannii rOmpA vaccine dose alters immune polarization and immunodominant epitopes. Vaccine 31(2):313–318

    Article  CAS  PubMed  Google Scholar 

  30. van Faassen H, KuoLee R, Harris G, Zhao X, Conlan JW, Chen W (2007) Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect Immun 75(12):5597–5608

    Article  PubMed  PubMed Central  Google Scholar 

  31. Qiu H, Li Z, KuoLee R, et al (2016) Host resistance to intranasal Acinetobacter baumannii reinfection in mice. Pathog Dis 74(5)

  32. Hsu D, Taylor P, Fletcher D et al (2016) Interleukin-17 pathophysiology and therapeutic intervention in cystic fibrosis lung infection and inflammation. Infect Immun 84(9):2410–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li J, Zhang K, Fan W et al (2019) Transcriptome profiling reveals differential effect of interleukin-17A upon influenza virus infection in human cells. Front Microbiol 10:2344

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tiringer K, Treis A, Fucik P et al (2013) A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 187(6):621–629

    Article  CAS  PubMed  Google Scholar 

  35. Li Q, Gu Y, Tu Q, Wang K, Gu X, Ren T (2016) Blockade of interleukin-17 restrains the development of acute lung injury. Scand J Immunol 83(3):203–211

    Article  CAS  PubMed  Google Scholar 

  36. Yan Z, Xiaoyu Z, Zhixin S et al (2016) Rapamycin attenuates acute lung injury induced by LPS through inhibition of Th17 cell proliferation in mice. Sci Rep 6:20156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ritchie ND, Ritchie R, Bayes HK, Mitchell TJ, Evans TJ (2018) IL-17 can be protective or deleterious in murine pneumococcal pneumonia. PLoS Pathog 14(5):e1007099

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lore NI, Cigana C, Riva C et al (2016) IL-17A impairs host tolerance during airway chronic infection by Pseudomonas aeruginosa. Sci Rep 6:25937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wolf L, Sapich S, Honecker A et al (2016) IL-17A-mediated expression of epithelial IL-17C promotes inflammation during acute Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol 311(5):L1015–L1022

    Article  PubMed  Google Scholar 

  40. Me R, Gao N, Dai C, Yu FX (2020) IL-17 Promotes Pseudomonas aeruginosa keratitis in C57BL/6 mouse corneas. J Immunol 204(1):169–179

    Article  CAS  PubMed  Google Scholar 

  41. Liu J, Qu H, Li Q, Ye L, Ma G, Wan H (2013) The responses of gammadelta T-cells against acute Pseudomonas aeruginosa pulmonary infection in mice via interleukin-17. Pathog Dis 68(2):44–51

    Article  CAS  PubMed  Google Scholar 

  42. Dubin PJ, Martz A, Eisenstatt JR, Fox MD, Logar A, Kolls JK (2012) Interleukin-23-mediated inflammation in Pseudomonas aeruginosa pulmonary infection. Infect Immun 80(1):398–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A (2021) The Neutrophil. Immunity 54(7):1377–1391

    Article  CAS  PubMed  Google Scholar 

  44. Hesselink L, Spijkerman R, van Wessem KJP et al (2019) Neutrophil heterogeneity and its role in infectious complications after severe trauma. World journal of emergency surgery : WJES 14:24

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) [grant number 81971561] and 1 3 5 project for disciplines of excellence, West China Hospital, Sichuan University [grant number ZYXY21004].

Funding

National Natural Science Foundation of China, 81971561, Yun Shi, West China Hospital, Sichuan University, 135 project for disciplines of excellence (No. ZYXY21004), Yun Shi.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Most of experiments and analysis were performed by Yangyang Zhou and Chuanying Xiang. Ning Wang, Xiaomin Zhang, Yu Xie, Hong Yang contributed to material preparation, technical support and data analysis. Gang Guo, and Kaiyun Liu contributed to the data analysis, resource and technical help. The first draft of the manuscript was written by Yangyang Zhou and Chuanying Xiang. Yun Shi and Yan Li conceived ideas and edited the manuscript. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding authors

Correspondence to Yan Li or Yun Shi.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Volkhard A.J. Kempf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xiang, C., Wang, N. et al. Acinetobacter baumannii reinforces the pathogenesis by promoting IL-17 production in a mouse pneumonia model. Med Microbiol Immunol 212, 65–73 (2023). https://doi.org/10.1007/s00430-022-00757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-022-00757-2

Keywords

Navigation