Skip to main content

Advertisement

Log in

The slow but steady rise of binding free energy calculations in drug discovery

  • Review
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Binding free energy calculations are increasingly used in drug discovery research to predict protein-ligand binding affinities and to prioritize candidate drug molecules accordingly. It has taken decades of collective effort to transform this academic concept into a technology adopted by the pharmaceutical and biotech industry. Having personally witnessed and taken part in this transformation, here I recount the (incomplete) list of problems that had to be solved to make this computational tool practical and suggest areas of future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22(8):1420–1426. https://doi.org/10.1063/1.1740409

    Article  CAS  Google Scholar 

  2. Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comp Phys 22(2):245–268. https://doi.org/10.1016/0021-9991(76)90078-4

    Article  Google Scholar 

  3. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129(12):124105. https://doi.org/10.1063/1.2978177

    Article  CAS  Google Scholar 

  4. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300–313. https://doi.org/10.1063/1.1749657

    Article  CAS  Google Scholar 

  5. Postma JPM, Berendsen HJC, Haak JR (1982) Thermodynamics of cavity formation in water. A molecular dynamics study. Faraday Symposia Chem Soc 17:55–67. https://doi.org/10.1039/fs9821700055

    Article  Google Scholar 

  6. Jorgensen WL, Ravimohan C (1985) Monte Carlo simulation of differences in free energies of hydration. J Chem Phys 83(6):3050–3054. https://doi.org/10.1063/1.449208

    Article  CAS  Google Scholar 

  7. Tembe BL, McCammon JA (1984) Ligand-receptor interactions. Comput Chem 8(4):281–283

    Article  CAS  Google Scholar 

  8. Bash PA, Singh UC, Brown FK, Langridge R, Kollman PA (1987) Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science 235(4788):574–576. https://doi.org/10.1126/science.3810157

    Article  CAS  Google Scholar 

  9. Singh UC, Benkovic SJ (1988) A free-energy perturbation study of the binding of methotrexate to mutants of dihydrofolate reductase. Proc Natl Acad Sci 85(24):9519–9523. https://doi.org/10.1073/pnas.85.24.9519

    Article  CAS  Google Scholar 

  10. Straatsma TP, McCammon JA (1992) Computational alchemy. Annu Rev Phys Chem 43(1):407–435. https://doi.org/10.1146/annurev.pc.43.100192.002203

    Article  CAS  Google Scholar 

  11. Rao BG, Kim EE, Murcko MA (1996) Calculation of solvation and binding free energy differences between VX-478 and its analogs by free energy perturbation and AMSOL methods. J Comput Aided Mol Des 10(1):23–30. https://doi.org/10.1007/bf00124462

    Article  CAS  Google Scholar 

  12. Erion MD, Reddy MR (1998) Calculation of relative hydration free energy differences for heteroaromatic compounds: use in the design of adenosine deaminase and cytidine deaminase inhibitors. J Am Chem Soc 120(14):3295–3304. https://doi.org/10.1021/ja972906j

    Article  CAS  Google Scholar 

  13. Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107(35):9535–9551. https://doi.org/10.1021/jp0217839

    Article  CAS  Google Scholar 

  14. Woo H-J, Roux B (2005) Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci USA 102(19):6825–6830. https://doi.org/10.1073/pnas.0409005102

    Article  CAS  Google Scholar 

  15. Radmer RJ, Kollman PA (1997) Free energy calculation methods: a theoretical and empirical comparison of numerical errors and a new method qualitative estimates of free energy changes. J Comput Chem 18(7):902–919

    Article  CAS  Google Scholar 

  16. Jorgensen WL, Tirado-Rives J (2005) Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J Comput Chem 26(16):1689–1700. https://doi.org/10.1002/jcc.20297

    Article  CAS  Google Scholar 

  17. Shenfeld DK, Xu H, Eastwood MP, Dror RO, Shaw DE (2009) Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations. Phys Rev E 80:046705. https://doi.org/10.1103/PhysRevE.80.046705

    Article  CAS  Google Scholar 

  18. S S, Roux B, Andersen OS (2000) Free energy simulations: thermodynamic reversibility and variability. J Phys Chem B 104(21):5179–5190. https://doi.org/10.1021/jp994193s

    Article  CAS  Google Scholar 

  19. Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222(6):529–539. https://doi.org/10.1016/0009-2614(94)00397-1

    Article  CAS  Google Scholar 

  20. Lee T-S, Lin Z, Allen BK, Lin C, Radak BK, Tao Y, Tsai H-C, Sherman W, York DM (2020) Improved alchemical free energy calculations with optimized smoothstep softcore potentials. J Chem Theory Comput 16(9):5512–5525. https://doi.org/10.1021/acs.jctc.0c00237

    Article  CAS  Google Scholar 

  21. Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH (2013) Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 139(18):184103. https://doi.org/10.1063/1.4826261

    Article  CAS  Google Scholar 

  22. Pan AC, Xu H, Palpant T, Shaw DE (2017) Quantitative characterization of the binding and unbinding of millimolar drug fragments with molecular dynamics simulations. J Chem Theory Comput 13(7):3372–3377. https://doi.org/10.1021/acs.jctc.7b00172 (PMID: 28582625)

    Article  CAS  Google Scholar 

  23. Mobley DL, Chodera JD, Dill KA (2007) Confine-and-release method: obtaining correct binding free energies in the presence of protein conformational change. J Chem Theory Comput 3(4):1231–1235. https://doi.org/10.1021/ct700032n (PMID: 18843379)

    Article  CAS  Google Scholar 

  24. Wang L, Deng Y, Knight JL, Wu Y, Kim B, Sherman W, Shelley JC, Lin T, Abel R (2013) Modeling local structural rearrangements using fep/rest: application to relative binding affinity predictions of cdk2 inhibitors. J Chem Theory Comput 9(2):1282–1293. https://doi.org/10.1021/ct300911a

    Article  CAS  Google Scholar 

  25. Jiang W, Roux B (2010) Free energy perturbation Hamiltonian replica-exchange molecular dynamics (fep/h-remd) for absolute ligand binding free energy calculations. J Chem Theory Comput 6(9):2559–2565. https://doi.org/10.1021/ct1001768

    Article  CAS  Google Scholar 

  26. Zhang S, Hahn DF, Shirts MR, Voelz VA (2021) Expanded ensemble methods can be used to accurately predict protein-ligand relative binding free energies. J Chem Theory Comput 17(10):6536–6547. https://doi.org/10.1021/acs.jctc.1c00513

    Article  CAS  Google Scholar 

  27. Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J Phys Chem B 111(45):13052–13063. https://doi.org/10.1021/jp0735987

    Article  CAS  Google Scholar 

  28. Chodera JD (2016) A simple method for automated equilibration detection in molecular simulations. J Chem Theory Comput 12(4):1799–1805. https://doi.org/10.1021/acs.jctc.5b00784

    Article  CAS  Google Scholar 

  29. Klimovich PV, Shirts MR, Mobley DL (2015) Guidelines for the analysis of free energy calculations. J Comput-Aided Mol Des 29(5):397–411. https://doi.org/10.1007/s10822-015-9840-9

    Article  CAS  Google Scholar 

  30. Mey ASJS, Allen BK, Bruce McDonald HE, Chodera JD, Hahn DF, Kuhn M, Michel J, Mobley DL, Naden LN, Prasad S, Rizzi A, Scheen J, Shirts MR, Tresadern G, Xu H (2020) Best practices for alchemical free energy calculations [article v1.0]. Living J Comput Mol Sci 2(1):18378. https://doi.org/10.33011/livecoms.2.1.18378

    Article  Google Scholar 

  31. Price MLP, Jorgensen WL (2000) Analysis of binding affinities for celecoxib analogues with COX-1 and COX-2 from combined docking and Monte Carlo simulations and insight into the COX-2/COX-1 selectivity. J Am Chem Soc 122(39):9455–9466. https://doi.org/10.1021/ja001018c

    Article  CAS  Google Scholar 

  32. Lee T-S, Kollman PA (2000) Theoretical studies suggest a new antifolate as a more potent inhibitor of thymidylate synthase. J Am Chem Soc 122(18):4385–4393. https://doi.org/10.1021/ja9925554

    Article  CAS  Google Scholar 

  33. Reddy MR, Erion MD (2001) Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. J Am Chem Soc 123(26):6246–6252. https://doi.org/10.1021/ja0103288

    Article  CAS  Google Scholar 

  34. Reddy MR, Erion MD (2001) Free energy calculations in rational drug design. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  35. Bollini M, Domaoal RA, Thakur VV, Gallardo-Macias R, Spasov KA, Anderson KS, Jorgensen WL (2011) Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents. J Med Chem 54(24):8582–8591. https://doi.org/10.1021/jm201134m

    Article  CAS  Google Scholar 

  36. Ivetac A, Swift SE, Boyer PL, Diaz A, Naughton J, Young JAT, Hughes SH, McCammon JA (2014) Discovery of novel inhibitors of HIV-1 reverse transcriptase through virtual screening of experimental and theoretical ensembles. Chem Biol Drug Des 83(5):521–531. https://doi.org/10.1111/cbdd.12277

    Article  CAS  Google Scholar 

  37. Dziedzic P, Cisneros JA, Robertson MJ, Hare AA, Danford NE, Baxter RHG, Jorgensen WL (2015) Design, synthesis, and protein crystallography of biaryltriazoles as potent tautomerase inhibitors of macrophage migration inhibitory factor. J Am Chem Soc 137(8):2996–3003. https://doi.org/10.1021/ja512112j

    Article  CAS  Google Scholar 

  38. Abel R, Wang L, Harder ED, Berne BJ, Friesner RA (2017) Advancing drug discovery through enhanced free energy calculations. Acc Chem Res 50(7):1625–1632. https://doi.org/10.1021/acs.accounts.7b00083

    Article  CAS  Google Scholar 

  39. Cournia Z, Allen B, Sherman W (2017) Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J Chem Inf Model 57(12):2911–2937. https://doi.org/10.1021/acs.jcim.7b00564

    Article  CAS  Google Scholar 

  40. Sherborne B, Shanmugasundaram V, Cheng AC, Christ CD, DesJarlais RL, Duca JS, Lewis RA, Loughney DA, Manas ES, McGaughey GB, Peishoff CE, Vlijmen Hv (2016) Collaborating to improve the use of free-energy and other quantitative methods in drug discovery. J Comput-Aided Mol Des 30(12):1139–1141. https://doi.org/10.1007/s10822-016-9996-y

    Article  CAS  Google Scholar 

  41. Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA (2007) Predicting absolute ligand binding free energies to a simple model site. J Mol Biol 371(4):1118–1134. https://doi.org/10.1016/j.jmb.2007.06.002

    Article  CAS  Google Scholar 

  42. Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC ’06: Proceedings of the 2006 ACM/IEEE conference on supercomputing, p 84. https://doi.org/10.1109/SC.2006.54

  43. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49(2):534–553. https://doi.org/10.1021/jm050540c

    Article  CAS  Google Scholar 

  44. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang J, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296. https://doi.org/10.1021/acs.jctc.5b00864

    Article  CAS  Google Scholar 

  45. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137(7):2695–2703. https://doi.org/10.1021/ja512751q

    Article  CAS  Google Scholar 

  46. Lee T-S, Allen BK, Giese TJ, Guo Z, Li P, Lin C, McGee TD, Pearlman DA, Radak BK, Tao Y, Tsai H-C, Xu H, Sherman W, York DM (2020) Alchemical binding free energy calculations in amber20: advances and best practices for drug discovery. J Chem Inf Model 60(11):5595–5623. https://doi.org/10.1021/acs.jcim.0c00613

    Article  CAS  Google Scholar 

  47. Zou J, Yin J, Fang L, Yang M, Wang T, Wu W, Bellucci MA, Zhang P (2020) Computational prediction of mutational effects on sars-cov-2 binding by relative free energy calculations. J Chem Inf Model 60(12):5794–5802. https://doi.org/10.1021/acs.jcim.0c00679

    Article  CAS  Google Scholar 

  48. Kuhn M, Firth-Clark S, Tosco P, Mey ASJS, Mackey MD, Michel J (2020) Assessment of binding affinity via alchemical free energy calculations. J Chem Inf Model 60(6):3120–3130. https://doi.org/10.1021/acs.jcim.0c00165

    Article  CAS  Google Scholar 

  49. Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC (2017) Predictions of ligand selectivity from absolute binding free energy calculations. J Am Chem Soc 139(2):946–957. https://doi.org/10.1021/jacs.6b11467

    Article  CAS  Google Scholar 

  50. Lemkul J (2019) From proteins to perturbed hamiltonians: a suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]. Living J Comput Mol Sci 1(1):5068. https://doi.org/10.33011/livecoms.1.1.5068

    Article  Google Scholar 

  51. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  52. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with amber on gpus. 2. Explicit solvent particle mesh ewald. J Chem Theory Comput 9(9):3878–3888. https://doi.org/10.1021/ct400314y

    Article  CAS  Google Scholar 

  53. Bergdorf M, Robinson-Mosher A, Guo X, Law K-H, Shaw DE (2021) Desmond/gpu performance as of april 2021. Technical report, New York, New York, USA. D. E. Shaw Research. https://www.deshawresearch.com/publications/Desmond-GPU_Performance_April_2021.pdf

  54. Zhang C-H, Spasov KA, Reilly RA, Hollander K, Stone EA, Ippolito JA, Liosi M-E, Deshmukh MG, Tirado-Rives J, Zhang S, Liang Z, Miller SJ, Isaacs F, Lindenbach BD, Anderson KS, Jorgensen WL (2021) Optimization of triarylpyridinone inhibitors of the main protease of SARS-CoV-2 to low-nanomolar antiviral potency. ACS Med Chem Lett 12(8):1325–1332. https://doi.org/10.1021/acsmedchemlett.1c00326

    Article  CAS  Google Scholar 

  55. Schindler CEM, Baumann H, Blum A, Böse D, Buchstaller H-P, Burgdorf L, Cappel D, Chekler E, Czodrowski P, Dorsch D, Eguida MKI, Follows B, Fuchß T, Grädler U, Gunera J, Johnson T, Lebrun CJ, Karra S, Klein M, Knehans T, Koetzner L, Krier M, Leiendecker M, Leuthner B, Li L, Mochalkin I, Musil D, Neagu C, Rippmann F, Schiemann K, Schulz R, Steinbrecher T, Tanzer E-M, Lopez AU, Follis AV, Wegener A, Kuhn D (2020) Large-scale assessment of binding free energy calculations in active drug discovery projects. J Chem Inf Model 60(11):5457–5474. https://doi.org/10.1021/acs.jcim.0c00900

    Article  CAS  Google Scholar 

  56. Zhang B, D’Erasmo MP, Murelli RP, Gallicchio E (2016) Free energy-based virtual screening and optimization of RNase H inhibitors of HIV-1 reverse transcriptase. ACS Omega 1(3):435–447. https://doi.org/10.1021/acsomega.6b00123

    Article  CAS  Google Scholar 

  57. Ciordia M, Pérez-Benito L, Delgado F, Trabanco AA, Tresadern G (2016) Application of free energy perturbation for the design of BACE1 inhibitors. J Chem Inf Model 56(9):1856–1871. https://doi.org/10.1021/acs.jcim.6b00220

    Article  CAS  Google Scholar 

  58. Lovering F, Aevazelis C, Chang J, Dehnhardt C, Fitz L, Han S, Janz K, Lee J, Kaila N, McDonald J, Moore W, Moretto A, Papaioannou N, Richard D, Ryan MS, Wan Z, Thorarensen A (2016) Imidazotriazines: spleen tyrosine kinase (Syk) inhibitors identified by free-energy perturbation (FEP). ChemMedChem 11(2):217–233. https://doi.org/10.1002/cmdc.201500333

    Article  CAS  Google Scholar 

  59. Cole DJ, Janecek M, Stokes JE, Rossmann M, Faver JC, McKenzie GJ, Venkitaraman AR, Hyvönen M, Spring DR, Huggins DJ, Jorgensen WL (2017) Computationally-guided optimization of small-molecule inhibitors of the Aurora A kinase-TPX2 protein-protein interaction. Chem Commun 53(67):9372–9375. https://doi.org/10.1039/c7cc05379g

    Article  CAS  Google Scholar 

  60. Schmidt TC, Eriksson P-O, Gustafsson D, Cosgrove D, Frølund B, Boström J (2017) Discovery and evaluation of anti-fibrinolytic plasmin inhibitors derived from 5-(4-Piperidyl)isoxazol-3-ol (4-PIOL). J Chem Inf Model 57(7):1703–1714. https://doi.org/10.1021/acs.jcim.7b00255

    Article  CAS  Google Scholar 

  61. Chen Z, Cox BD, Garnier-Amblard EC, McBrayer TR, Coats SJ, Schinazi RF, Amblard F (2017) Synthesis and anti-HCV activity of a series of \(\beta \)-d-2’-deoxy-2’-dibromo nucleosides and their corresponding phosphoramidate prodrugs. Bioorg Med Chem Lett 27(23):5296–5299. https://doi.org/10.1016/j.bmcl.2017.10.024

    Article  CAS  Google Scholar 

  62. Carabet LA, Lallous N, Leblanc E, Ban F, Morin H, Lawn S, Ghaidi F, Lee J, Mills IG, Gleave ME, Rennie PS, Cherkasov A (2018) Computer-aided drug discovery of Myc-Max inhibitors as potential therapeutics for prostate cancer. Eur J Med Chem 160:108–119. https://doi.org/10.1016/j.ejmech.2018.09.023

    Article  CAS  Google Scholar 

  63. Välimäki M (2018) Discovery of cardioprotective isoxazole-amide compounds targeting the synergy of transcription factors gata4 and nkx2-5. PhD thesis, University of Oulu, Faculty of Medicine. http://urn.fi/urn:isbn:9789529412525

  64. Bassanini I, D’Annessa I, Costa M, Monti D, Colombo G, Riva S (2018) Chemo-enzymatic synthesis of ( E )-2,3-diaryl-5-styryl- trans -2,3-dihydrobenzofuran-based scaffolds and their in vitro and in silico evaluation as a novel sub-family of potential allosteric modulators of the 90 kDa heat shock protein (Hsp90). Org Biomol Chem 16(20):3741–3753. https://doi.org/10.1039/c8ob00644j

    Article  CAS  Google Scholar 

  65. Li Z, Li X, Huang Y-Y, Wu Y, Liu R, Zhou L, Lin Y, Wu D, Zhang L, Liu H, Xu X, Yu K, Zhang Y, Cui J, Zhan C-G, Wang X, Luo H-B (2020) Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc Natl Acad Sci 117(44):27381–27387. https://doi.org/10.1073/pnas.2010470117

    Article  CAS  Google Scholar 

  66. Montgomery AP, Dobie C, Szabo R, Hallam L, Ranson M, Yu H, Skropeta D (2020) Design, synthesis and evaluation of carbamate-linked uridyl-based inhibitors of human ST6Gal I. Bioorg Med Chem 28(14):115561. https://doi.org/10.1016/j.bmc.2020.115561

    Article  CAS  Google Scholar 

  67. Leger PR, Hu DX, Biannic B, Bui M, Han X, Karbarz E, Maung J, Okano A, Osipov M, Shibuya GM, Young K, Higgs C, Abraham B, Bradford D, Cho C, Colas C, Jacobson S, Ohol YM, Pookot D, Rana P, Sanchez J, Shah N, Sun M, Wong S, Brockstedt DG, Kassner PD, Schwarz JB, Wustrow DJ (2020) Discovery of potent, selective, and orally bioavailable inhibitors of USP7 with in vivo antitumor activity. J Med Chem 63(10):5398–5420. https://doi.org/10.1021/acs.jmedchem.0c00245

    Article  CAS  Google Scholar 

  68. Kesely K, Noomuna P, Vieth M, Hipskind P, Haldar K, Pantaleo A, Turrini F, Low PS (2020) Identification of tyrosine kinase inhibitors that halt Plasmodium falciparum parasitemia. PLoS ONE 15(11):0242372. https://doi.org/10.1371/journal.pone.0242372

    Article  CAS  Google Scholar 

  69. Fratev F, Gutierrez DA, Aguilera RJ, Tyagi A, Damodaran C, Sirimulla S (2020) Discovery of new AKT1 inhibitors by combination of in silico structure based virtual screening approaches and biological evaluations. J Biomol Struct Dyn 39(1):1–11. https://doi.org/10.1080/07391102.2020.1715835

    Article  CAS  Google Scholar 

  70. Fushimi M, Buck H, Balbach M, Gorovyy A, Ferreira J, Rossetti T, Kaur N, Levin LR, Buck J, Quast J, Heuvel J.v.d, Steegborn C, Finkin-Groner E, Kargman S, Michino M, Foley MA, Miller M, Liverton NJ, Huggins DJ, Meinke PT (2021) Discovery of TDI-10229: a potent and orally bioavailable inhibitor of soluble adenylyl cyclase (sAC, ADCY10). ACS Med Chem Lett 12(8):1283–1287. https://doi.org/10.1021/acsmedchemlett.1c00273

    Article  CAS  Google Scholar 

  71. Balasubramaniam M, Lakkaniga NR, Dera AA, Fayi MA, Abohashrh M, Ahmad I, Chandramoorthy HC, Nalini G, Rajagopalan P (2021) FCX-146, a potent allosteric inhibitor of Akt kinase in cancer cells: lead optimization of the second-generation arylidene indanone scaffold. Biotechnol Appl Biochem 68(1):82–91. https://doi.org/10.1002/bab.1896

    Article  CAS  Google Scholar 

  72. Palmer MJ, Deng X, Watts S, Krilov G, Gerasyuto A, Kokkonda S, Mazouni FE, White J, White KL, Striepen J, Bath J, Schindler KA, Yeo T, Shackleford DM, Mok S, Deni I, Lawong A, Huang A, Chen G, Wang W, Jayaseelan J, Katneni K, Patil R, Saunders J, Shahi SP, Chittimalla R, Angulo-Barturen I, Jiménez-Díaz MB, Wittlin S, Tumwebaze PK, Rosenthal PJ, Cooper RA, Aguiar ACC, Guido RVC, Pereira DB, Mittal N, Winzeler EA, Tomchick DR, Laleu B, Burrows JN, Rathod PK, Fidock DA, Charman SA, Phillips MA (2021) Potent antimalarials with development potential identified by structure-guided computational optimization of a pyrrole-based dihydroorotate dehydrogenase inhibitor series. J Med Chem 64(9):6085–6136. https://doi.org/10.1021/acs.jmedchem.1c00173

    Article  CAS  Google Scholar 

  73. Chang W, Altman MD, Lesburg CA, Perera SA, Piesvaux JA, Schroeder GK, Wyss DF, Cemerski S, Chen Y, DiNunzio E, Haidle AM, Ho T, Kariv I, Knemeyer I, Kopinja JE, Lacey BM, Laskey J, Lim J, Long BJ, Ma Y, Maddess ML, Pan B-S, Presland JP, Spooner E, Steinhuebel D, Truong Q, Zhang Z, Fu J, Addona GH, Northrup AB, Parmee E, Tata JR, Bennett DJ, Cumming JN, Siu T, Trotter BW (2022) Discovery of MK-1454: a potent cyclic dinucleotide stimulator of interferon genes agonist for the treatment of cancer. J Med Chem 65(7):5675–5689. https://doi.org/10.1021/acs.jmedchem.1c02197

    Article  CAS  Google Scholar 

  74. Val C, Rodríguez-García C, Prieto-Díaz R, Crespo A, Azuaje J, Carbajales C, Majellaro M, Díaz-Holguín A, Brea JM, Loza MI, Gioé-Gallo C, Contino M, Stefanachi A, García-Mera X, Estévez JC, Gutiérrez-de-Terán H, Sotelo E (2022) Optimization of 2-amino-4, 6-diarylpyrimidine-5-carbonitriles as potent and selective A1 antagonists. J Med Chem 65(3):2091–2106. https://doi.org/10.1021/acs.jmedchem.1c01636

    Article  CAS  Google Scholar 

  75. Liu S, Wang L, Mobley DL (2015) Is ring breaking feasible in relative binding free energy calculations? J Chem Inf Model 55(4):727–735. https://doi.org/10.1021/acs.jcim.5b00057

    Article  CAS  Google Scholar 

  76. Wang L, Deng Y, Wu Y, Kim B, LeBard DN, Wandschneider D, Beachy M, Friesner RA, Abel R (2017) Accurate modeling of scaffold hopping transformations in drug discovery. J Chem Theory Comput 13(1):42–54. https://doi.org/10.1021/acs.jctc.6b00991

    Article  CAS  Google Scholar 

  77. Zou J, Li Z, Liu S, Peng C, Fang D, Wan X, Lin Z, Lee T-S, Raleigh DP, Yang M, Simmerling C (2021) Scaffold hopping transformations using auxiliary restraints for calculating accurate relative binding free energies. J Chem Theory Comput 17(6):3710–3726. https://doi.org/10.1021/acs.jctc.1c00214

    Article  CAS  Google Scholar 

  78. Pearlstein RA, Sherman W, Abel R (2013) Contributions of water transfer energy to protein-ligand association and dissociation barriers: watermap analysis of a series of p38 \(\alpha \) MAP kinase inhibitors. Proteins Struct Funct Bioinf 81(9):1509–1526. https://doi.org/10.1002/prot.24276

    Article  CAS  Google Scholar 

  79. Hamelberg D, McCammon JA (2004) Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. J Am Chem Soc 126(24):7683–7689. https://doi.org/10.1021/ja0377908

    Article  CAS  Google Scholar 

  80. Michel J, Tirado-Rives J, Jorgensen WL (2009) Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. J Am Chem Soc 131(42):15403–15411. https://doi.org/10.1021/ja906058w

    Article  CAS  Google Scholar 

  81. Bergazin TD, Ben-Shalom IY, Lim NM, Gill SC, Gilson MK, Mobley DL (2021) Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo. J Comput-Aided Mol Des 35(2):167–177. https://doi.org/10.1007/s10822-020-00344-8

    Article  CAS  Google Scholar 

  82. Ben-Shalom IY, Lin Z, Radak BK, Lin C, Sherman W, Gilson MK (2020) Accounting for the central role of interfacial water in protein-ligand binding free energy calculations. J Chem Theory Comput 16(12):7883–7894. https://doi.org/10.1021/acs.jctc.0c00785

    Article  CAS  Google Scholar 

  83. Ben-Shalom IY, Lin C, Radak BK, Sherman W, Gilson MK (2021) Fast equilibration of water between buried sites and the bulk by molecular dynamics with parallel Monte Carlo water moves on graphical processing units. J Chem Theory Comput 17(12):7366–7372. https://doi.org/10.1021/acs.jctc.1c00867

    Article  CAS  Google Scholar 

  84. Hudson PS, Woodcock HL, Boresch S (2015) Use of nonequilibrium work methods to compute free energy differences between molecular mechanical and quantum mechanical representations of molecular systems. J Phys Chem Lett 6(23):4850–4856. https://doi.org/10.1021/acs.jpclett.5b02164

    Article  CAS  Google Scholar 

  85. Giese TJ, York DM (2019) Development of a robust indirect approach for MM \(\rightarrow \) QM free energy calculations that combines force-matched reference potential and Bennett’s acceptance ratio methods. J Chem Theory Comput 15(10):5543–5562. https://doi.org/10.1021/acs.jctc.9b00401

    Article  CAS  Google Scholar 

  86. Smith JS, Isayev O, Roitberg AE (2017) Ani-1: an extensible neural network potential with dft accuracy at force field computational cost. Chem Sci 8:3192–3203. https://doi.org/10.1039/C6SC05720A

    Article  CAS  Google Scholar 

  87. Rufa DA, Bruce Macdonald HE, Fass J, Wieder M, Grinaway PB, Roitberg AE, Isayev O, Chodera JD (2020) Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning / molecular mechanics potentials. bioRxiv. https://doi.org/10.1101/2020.07.29.227959

    Article  Google Scholar 

  88. Ko TW, Finkler JA, Goedecker S, Behler J (2021) A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat Commun 12(1):398. https://doi.org/10.1038/s41467-020-20427-2

    Article  CAS  Google Scholar 

  89. Christensen AS, Sirumalla SK, Qiao Z, O’Connor MB, Smith DGA, Ding F, Bygrave PJ, Anandkumar A, Welborn M, Manby FR et al (2021) Orbnet denali: a machine learning potential for biological and organic chemistry with semi-empirical cost and dft accuracy. J Chem Phys 155(20):204103. https://doi.org/10.1063/5.0061990

    Article  CAS  Google Scholar 

  90. Mobley DL, Dill KA (2009) Binding of Small-Molecule Ligands to Proteins: “What You See’’ Is Not Always “What You Get’’. Structure 17(4):489–498. https://doi.org/10.1016/j.str.2009.02.010

    Article  CAS  Google Scholar 

  91. Xu H, Palpant T, Weinberger C, Shaw DE (2022) Characterizing receptor flexibility to predict mutations that lead to human adaptation of influenza hemagglutinin. J Chem Theory Comput 18(8):4995–5005. https://doi.org/10.1021/acs.jctc.1c01044

    Article  CAS  Google Scholar 

  92. Lawrenz M, Baron R, Wang Y, McCammon JA (2011) Effects of biomolecular flexibility on alchemical calculations of absolute binding free energies. J Chem Theory Comput 7(7):2224–2232. https://doi.org/10.1021/ct200230v

    Article  CAS  Google Scholar 

  93. Araki M, Kamiya N, Sato M, Nakatsui M, Hirokawa T, Okuno Y (2016) The effect of conformational flexibility on binding free energy estimation between kinases and their inhibitors. J Chem Inf Model 56(12):2445–2456. https://doi.org/10.1021/acs.jcim.6b00398

    Article  CAS  Google Scholar 

  94. Zuckerman DM, Chong LT (2016) Weighted ensemble simulation: review of methodology, applications, and software. Annu Rev Biophys 46(1):43–57. https://doi.org/10.1146/annurev-biophys-070816-033834

    Article  CAS  Google Scholar 

  95. Fu H, Zhang H, Chen H, Shao X, Chipot C, Cai W (2018) Zooming across the free-energy landscape: shaving barriers, and flooding valleys. J Phys Chem Lett 9(16):4738–4745. https://doi.org/10.1021/acs.jpclett.8b01994

    Article  CAS  Google Scholar 

  96. Xu H (2019) Optimal measurement network of pairwise differences. J Chem Inf Model 59(11):4720–4728. https://doi.org/10.1021/acs.jcim.9b00528

    Article  CAS  Google Scholar 

  97. Liu S, Wu Y, Lin T, Abel R, Redmann JP, Summa CM, Jaber VR, Lim NM, Mobley DL (2013) Lead optimization mapper: automating free energy calculations for lead optimization. J Comput-Aided Mol Des 27(9):755–70. https://doi.org/10.1007/s10822-013-9678-y

    Article  CAS  Google Scholar 

  98. Yang Q, Burchett W, Steeno GS, Liu S, Yang M, Mobley DL, Hou X (2019) Optimal designs for pairwise calculation: an application to free energy perturbation in minimizing prediction variability. J Comput Chem 41(3):247–257. https://doi.org/10.1002/jcc.26095

    Article  CAS  Google Scholar 

  99. Li P, Li Z, Wang Y, Dou H, Radak BK, Allen BK, Sherman W, Xu H (2021) Precise binding free energy calculations for multiple molecules using an optimal measurement network of pairwise differences. J Chem Theory Comput 18(2):650–663. https://doi.org/10.1021/acs.jctc.1c00703

    Article  CAS  Google Scholar 

  100. Giese TJ, York DM (2021) Variational method for networkwide analysis of relative ligand binding free energies with loop closure and experimental constraints. J Chem Theory Comput 17(3):1326–1336. https://doi.org/10.1021/acs.jctc.0c01219

    Article  CAS  Google Scholar 

  101. Segler MHS, Kogej T, Tyrchan C, Waller MP (2017) Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci 4(1):120–131. https://doi.org/10.1021/acscentsci.7b00512

    Article  CAS  Google Scholar 

  102. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4(2):268–276. https://doi.org/10.1021/acscentsci.7b00572

    Article  CAS  Google Scholar 

  103. Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4(7):7885. https://doi.org/10.1126/sciadv.aap7885

    Article  CAS  Google Scholar 

  104. Konze KD, Bos PH, Dahlgren MK, Leswing K, Tubert-Brohman I, Bortolato A, Robbason B, Abel R, Bhat S (2019) Reaction-based enumeration, active learning, and free energy calculations to rapidly explore synthetically tractable chemical space and optimize potency of cyclin-dependent kinase 2 inhibitors. J Chem Inf Model 59(9):3782–3793. https://doi.org/10.1021/acs.jcim.9b00367

    Article  CAS  Google Scholar 

  105. Allen BK, Kulkarni MM, Chamberlain B, Dwight T, Koh C, Samant R, Jernigan F, Rice J, Tan D, Li S, Marino K, Huang H, Chiswick E, Tesar B, Sparks S, Lin Z, McGee TD, Kolossváry I, Lin C, Shechter S, Soutter H, Bastos C, Taimi M, Lai S, Petrin A, Kane T, Swann S, Gardner H, Winter C, Sherman W (2022) Design of a systemic small molecule clinical sting agonist using physics-based simulations and artificial intelligence. bioRxiv. https://doi.org/10.1101/2022.05.23.493001

    Article  Google Scholar 

Download references

Acknowledgements

I wish to acknowledge my colleagues, especially Justin Gullingsrud, Ross Lippert, Michael Bergdorf, and Sean Baxter, for their critical contributions to the BFE functionality in DESMOND. I thank Woody Sherman and Alexander Tropsha for thoughtful suggestions to this writing and Yunxing (Stella) Li for her help in preparing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Xu.

Ethics declarations

Competing interests

Huafeng Xu is a shareholder of Stingthera, which is conducting clinical trials of the STING agonist described in reference [105]. Huafeng Xu is the sole author of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10822_2022_494_MOESM1_ESM.xlsx

Supplementary file1 (XLSX 49 kb). Number of publications in medicinal chemistry and drug discovery journals reporting BFE applications

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H. The slow but steady rise of binding free energy calculations in drug discovery. J Comput Aided Mol Des 37, 67–74 (2023). https://doi.org/10.1007/s10822-022-00494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-022-00494-x

Keywords

Navigation