Skip to main content
Log in

Dissociation and Combustion of Gas Hydrates

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Experimental studies have been carried out on the combustion of powder, tablet, and sphere of methane hydrate, as well as double hydrates of methane-ethane and methane-isopropanol. It has been shown that the rate of decay J/m 0 (1/s) of porous powder of double hydrates of methane-ethane and methane-isopropanol is lower than that of methane hydrate. The decay changes non-linearly with time. At the final stage of combustion, the slope of decay curve decreases. The rate of decay J (kg/s) of sphere of double hydrate of methane-ethane is higher than that of methane gas hydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Sum, A.K., Koh, C.A., and Sloan, E.D., Clathrate Hydrates: From Laboratory Science to Engineering Practice, Ind. Eng. Chem. Res., 2009, vol. 48, pp. 7457–7465.

    Article  Google Scholar 

  2. Istomin, V.A. and Yakushev, V.S., Gazovye gidraty v prirodnykh usloviyakh (Gas Hydrates in Nature), Moscow: Nedra, 1992.

    Google Scholar 

  3. Misyura, S.Y., Developing the Environmentally Friendly Technologies of Combustion of Gas Hydrates. Reducing Harmful Emissions during Combustion, Environmental Pollution, 2020, vol. 265, p. 114871.

    Article  Google Scholar 

  4. Liu, Y., Su, Y., Guan, J., Cao, J., Zhang, R., He, M., and Jiang, Z., Asymmetric Aerogel Membranes with Ultra-Fast Water Permeation for Separation of Oil-In-Water Emulsion, ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 26546–26554.

    Article  Google Scholar 

  5. Misyura, S.Y., Donskoy, I.G., Manakov, A.Y., Morozov, V.S., Strizhak, P.A., Skiba, S.S., and Sagidullin, A.K., Studying the Influence of Key Parameters on the Methane Hydrate Dissociation in Order to Improve the Storage Efficiency, J. Energy Storage, 2021, vol. 44, p. 103288.

    Article  Google Scholar 

  6. Takeya, S., Yoneyama, A., Ueda, K., Mimachi, H., Takahashi, M., Sano, K., Hyodo, K., Takeda, T., and Gotoh, Y., Anomalously Preserved Clathrate Hydrate of Natural Gas in Pellet Form at 253 K, J. Phys. Chem. C, 2012, vol. 116, pp. 13842–13848.

    Article  Google Scholar 

  7. Misyura, S.Y. and Donskoy, I.G., Dissociation of Gas Hydrate for a Single Particle and for a Thick Layer of Particles: The Effect of Self-Preservation on the Dissociation Kinetics of the Gas Hydrate Layer, Fuel, 2022, vol. 314, p. 122759.

    Article  Google Scholar 

  8. Kuhs, W.F., Genov, G., Staykova, D.K., and Hansen, T., Ice Perfection and Onset of Anomalous Preservation of Gas Hydrates, Phys. Chem. Chem. Phys., 200, vol. 46, pp. 4917–4920.

    Article  Google Scholar 

  9. Zhang, G. and Rogers, R.E., Ultra-Stability of Gas Hydrates at 1 atm and 268.2 K, Chem. Eng. Sci., 2008, vol. 63, pp. 2066–2074.

    Article  Google Scholar 

  10. Takeya, S. and Ripmeester, J.A., Anomalous Preservation of CH4 Hydrate and Its Dependence on the Morphology of Ice, Chem. Phys. Chem., 2010, vol. 11, pp. 70–73.

    Article  Google Scholar 

  11. Takeya, S., Yoneyama, A., Ueda, K., Hyodo, K., Takeda, T., Mimachi, H., Takahashi, M., Iwasaki, T., Sano, K., Yamawaki, H., and Gotoh, Y., Nondestructive Imaging of Anomalously Preserved Methane Clathrate Hydrate by Phase Contrast X-Ray Imaging, J. Phys. Chem., 2011, vol. 115, pp. 16193–16199.

    Article  Google Scholar 

  12. Misyura, S.Y. and Donskoy, I.G., Dissociation of a Powder Layer of Methane Gas Hydrate in a Wide Range of Temperatures and Heat Fluxes, Powder Technol., 2022, vol. 397, p. 117017.

    Article  Google Scholar 

  13. Misyura, S.Y. and Donskoy, I.G., Improving the Efficiency of Storage of Natural and Artificial Methane Hydrates, J. Natural Gas Sci. Engin., 2022, vol. 97, p. 104324.

    Article  Google Scholar 

  14. Stern, L.A., Circone, S., Kirby, S.H., and Durham, W.B., Anomalous Preservation of Pure Methane Hydrate at 1 atm., J. Phys. Chem. B, 2001, vol. 105, pp. 1756–1762.

    Article  Google Scholar 

  15. Stern, L.A., Circone, S., Kirby, S.H., and Durham, W.B., Temperature, Pressure and Compositional Effects on Anomalous or “Self” Preservation of Gas Hydrates, Can. J. Phys., 2003, vol. 81, pp. 271–283.

    Article  ADS  Google Scholar 

  16. Shimada, W., Takeya, S., Kamata, Y., Uchida, T., Nagao, J., Ebinuma, T., and Narita, H., Texture Change of Ice on Anomalously Preserved Methane Clathrate Hydrate, J. Phys. Chem. B, 2005, vol. 109, pp. 5802–5807.

    Article  Google Scholar 

  17. Kuznetsov, G.V., Misyura, S.Y, Volkov, R.S., and Morozov, V.S., Marangoni Flow and Free Convection during Crystallization of a Salt Solution Droplet, Colloids Surf. A, 2019, vol. 572, pp. 37–46.

    Article  Google Scholar 

  18. Prasad, P.S.R. and Chari, V.D., Preservation of Methane Gas in the Form of Hydrates: Use of Mixed Hydrates, J. Natural Gas Sci. Engin., 2015, vol. 25, pp. 10–14.

    Article  Google Scholar 

  19. Misyura, S.Y., Dissociation of Various Gas Hydrates (Methane Hydrate, Double Gas Hydrates of Methane–Propane and Methane–Isopropanol) during Combustion: Assessing the Combustion Efficiency, Energy, 2020, vol. 206, p. 118120.

    Article  Google Scholar 

  20. Misyura, S.Y., Manakov, A.Y., Morozov, V.S., Nyashina, G.S., Gaidukova, O.S., Skiba, S.S., Volkov, R.S., and Voytkov, I.S., The Influence of Key Parameters on Combustion of Double Gas Hydrate, J. Natural Gas Sci. Engin., 2020, vol. 80, pp. 103396.

    Article  Google Scholar 

  21. Misyura, S.Y. and Donskoy, I.G., Dissociation Kinetics of Methane Hydrate and CO2 Hydrate for Different Granular Composition, Fuel, 2020, vol. 262, p. 116614.

    Article  Google Scholar 

  22. Misyura, S.Y., Volkov, R.S., Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf. A, 2018, vol. 559, pp. 275–283.

    Article  Google Scholar 

  23. Singh, H. and Myong, R.S., Critical Review of Fluid Flow Physics at Micro- to Nano-Scale Porous Media Applications in the Energy Sector, Adv. Mater. Sci. Engin., 2018, vol. 2018, p. 9565240.

    Article  Google Scholar 

  24. Aerov, M.E., Todes, O.M., and Narinskii, D.A., Apparaty so statsionarnym zernistym sloem. Gidravlicheskie i teplovye osnovy raboty (Apparatuses with Steady Grain Layer: Hydraulic and Thermal Fundamentals of Operation), Leningrad: Khimiya, 1979.

    Google Scholar 

  25. Misyura, S.Y. and Morozov, V.S., Influence of Air Velocity on Non-Isothermal Decay and Combustion of Gas Hydrate, J. Eng. Therm., 2021, vol. 30, pp. 374–382.

    Article  Google Scholar 

  26. Misyura, S.Ya., Morozov, V.S., and Gobyzov, O.A., Convection in Water Droplet in the Presence of External Air Motion, J. Eng. Therm., 2020, vol. 29, pp. 443–450.

    Article  Google Scholar 

  27. Misyura S.Y., The Influence of Convection on Heat Transfer in a Water Layer on a Heated Structured Wall, Int. Comm. Heat Mass Transfer, 2019, vol. 102, pp. 14–21.

    Article  Google Scholar 

  28. Musakaev, N.G., Borodin, S.L., and Gubaidullin, A.A., Methodology for the Numerical Study of the Methane Hydrate Formation during Gas Injection into a Porous Medium, Lobachevskii J. Math., 2020, vol. 41, no. 7, pp. 1272–1277.

    Article  MathSciNet  MATH  Google Scholar 

  29. Khasanov, M.K., Rafikova, G.R., and Musakaev, N.G., Mathematical Model of Carbon Dioxide Injection into a Porous Reservoir Saturated with Methane and Its Gas Hydrate, Energies, 2020, vol. 13, p. 440.

    Article  Google Scholar 

  30. Misyura, S.Y., The Influence of Characteristic Scales of Convection on Non-Isothermal Evaporation of a Thin Liquid Layer, Sci. Rep., 2018, vol. 8, p. 11521.

    Article  ADS  Google Scholar 

  31. Misyura, S.Y., Dependence of Wettability of Microtextured Wall on the Heat and Mass Transfer: Simple Estimates for Convection and Heat Transfer, Int. J. Mech. Sci., 2020, vol. 170, p. 105353.

    Article  Google Scholar 

  32. Misyura, S.Y., Bilsky, A.V., Morozov, V.S., Gobyzov, O.A., and Ryabov, M.N., Evaporation of a Droplet of a Heated Colloid Solution on a Horizontal Structured Wall, J. Eng. Therm., 2021, vol. 30, pp. 654–660.

    Article  Google Scholar 

  33. Misyura, S.Y., High Temperature Nonisothermal Desorption in a Water-Salt Droplet, Int. J. Therm. Sci., 2015, vol. 92, pp. 34–43.

    Article  Google Scholar 

  34. Cui, Y., et al., Review of Exploration and Production Technology of Natural Gas Hydrate, Adv. Geo-Energy Res., 2018, vol. 2, pp. 53–62.

    Article  Google Scholar 

  35. Wang, Y., Feng, J.C., Sen, L.X., Zhan, L., and Li, X.Y., Pilot-Scale Experimental Evaluation of Gas Recovery from Methane Hydrate Using Cycling-Depressurization Scheme, Energy, 2018, vol. 160, pp. 835–844.

    Article  Google Scholar 

  36. Li, B., et al., An Experimental Study on Gas Production from Fracture-Filled Hydrate by CO2 and CO2/N2 Replacement, Energy Convers. Manag., 2018, vol. 165, pp. 738–747.

    Article  Google Scholar 

  37. Tupsakhare, S.S. and Castaldi, M.J., Efficiency Enhancements in Methane Recovery from Natural Gas Hydrates Using Injection of CO2/N2 Gas Mixture Simulating In-Situ Combustion, Appl. Energy, 2019, vol. 236, pp. 825–836.

    Article  Google Scholar 

  38. Maruyama, Y., Fuse, M.J., Yokomori, T., Ohmura, R., Watanabe, S., Iwasaki, T., Iwabuchi, W., and Ueda, T., Experimental Investigation of Flame Spreading over Pure Methane Hydrate in a Laminar Boundary Layer, Proc. Combust. Inst., 2013, vol. 34, pp. 2131–2138.

    Article  Google Scholar 

  39. Misyura, S.Y., Non-Stationary Combustion of Natural and Artificial Methane Hydrate at Heterogeneous Dissociation, Energy, 2019, vol. 181, pp. 589–602.

    Article  Google Scholar 

  40. Nakamura, Y., Katsuki, R., Yokomori, T., Ohmura, R., Takahashi, M., Iwasaki, T., Uchida, K., and Ueda, T., Combustion Characteristics of Methane Hydrate in a Laminar Boundary Layer, Energy Fuels, 2009, vol. 23, pp. 1445–1449.

    Article  Google Scholar 

  41. Wu, F.H., Padilla, R.E., Dunn-Rankin, D., Chen, G.B., and Chao, Y.C., Thermal Structure of Methane Hydrate Fueled Flames, Proc. Combust. Inst., 2017, vol. 36, pp. 4391–4398.

    Article  Google Scholar 

  42. Chien, Y.-C. and Dunn-Rankin, D., Combustion Characteristics of Methane Hydrate Flames, Energies, 2019, vol. 12, no. 10, p. 1939.

    Article  Google Scholar 

  43. Yoshioka, T., Yamamoto, Y., Yokomori, T., Ohmura, R., and Ueda, T., Experimental Study on Combustion of Methane Hydrate Sphere, Exp. Fluids, 2015, vol. 56, p. 192.

    Article  ADS  Google Scholar 

  44. Bar-Kohany, T. and Sirignano, W.A., Transient Combustion of Methane-Hydrate Sphere, Combust. Flame, 2016, vol. 163, pp. 284–300.

    Article  Google Scholar 

  45. Dagan, Y. and Bar-Kohany, T., Flame Propagation through Three-Phase Methane-Hydrate Particles, Combust. Flame, 2018, vol. 193, pp. 25–35.

    Article  Google Scholar 

  46. Cui, G., Wang, S., Dong, Z., Xing, X., Shan, T., and Li, Z., Effects of the Diameter and the Initial Center Temperature on the Combustion Characteristics of Methane Hydrate Spheres, Appl. Energy, 2020, vol. 257, p. 114058.

    Article  Google Scholar 

  47. Cui, G., Dong, Z., Wang, S., Xing, X., Shan, T., and Li, Z., Effect of the Water on the Flame Characteristics of Methane Hydrate Combustion, Appl. Energy, 2020, vol. 259, p. 114205.

    Article  Google Scholar 

  48. Misyura, S.Y., Comparing the Dissociation Kinetics of Various Gas Hydrates during Combustion: Assessment of Key Factors to Improve Combustion Efficiency, Appl. Energy, 2020, vol. 270, p. 115042.

    Article  Google Scholar 

  49. Misyura, S.Y. and Donskoy, I.G., Co-Modeling of Methane Hydrate Dissociation and Combustion in a Boundary Layer, Combust. Flame, 2022, vol. 238, p. 111912.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Misyura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misyura, S.Y. Dissociation and Combustion of Gas Hydrates. J. Engin. Thermophys. 31, 573–579 (2022). https://doi.org/10.1134/S181023282204004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282204004X

Navigation