Skip to main content
Log in

Heat Transfer Enhancement on Surface Modified via Additive Manufacturing during Pool Boiling of Freon

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This article presents the results of experimental studies of the efficiency of heat transfer on a flat rectangular (\(16\times 24\) mm2) heat transfer surface ( HTS) modified via additive manufacturing. Comparative experimental studies were carried out on an unmodified HTS and two modified HTSeswith different geometric parameters of the modifying coating. A porous sinusoidal coating consisting of spherical bronze granules with an average diameter of 35 \(\mu\)m was 3D printed on the brass base of the heat transfer unit. The coating thickness is 150 \(\mu\)m in the deepenings and 300 \(\mu\)m and 700 \(\mu\)m on the ridges. The heat transfer was studied during free-convection boiling of liquid freon R21 at heat flux densities of 200–\(5\cdot 10^5\) W/m2 at a reduced pressure of 0.03. The experiments have shown that for the modified surfaces, activation of nucleation sites begins at a significantly lower heat flux density compared with the case of the smooth unmodified surface. Under conditions of activated nucleation sites on a modified surface, the heat transfer coefficient increases 4–5 times. Activation of nucleation sites is realized in the deepenings of the sinusoidal coating. Upon activation of nucleation sites (at heat loads less than 100,000 W/m2), the heat transfer intensity is the same for both studied surfaces having the same coating thickness in the deepenings. On the surface with significantly higher ridges at heat loads \(10,000 < q< 300,000\) W/m2 upon activation of nucleation sites, the temperature difference observed is smaller than that on the surface with smaller ridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Kurihara, H.M. and Myers, J.E., The Effects of Superheat and Surface Roughness on Boiling Coefficients, AIChE J., 1960, vol. 6, no. 1, pp. 83–91.

    Article  Google Scholar 

  2. Berenson, P.J., Experiments on Pool-Boiling Heat Transfer, Int. J. Heat Mass Transfer, 1962, vol. 5, no. 10, pp. 985–999.

    Article  Google Scholar 

  3. Danilova, G.N. and Bel’skii, V.K., Study of Heat Transfer at Boiling of Freons 113 and 12 on Tubes of Various Roughness, Kholod. Tekh., 1965, vol. 4, pp. 24–28.

    Google Scholar 

  4. Gogonin, I.I., The Effect of Artificial Vaporization Centers on Heat Exchange During Boiling of the Film Irrigating a Bundle of Horizontal Finned Pipes, Thermophys. Aeromech., 2021, vol. 28. no. 5, pp. 697–702; doi.10.1134/S0869864321050103.

    Article  ADS  Google Scholar 

  5. Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, vol. 66, pp. 173–196; doi.10.1016/j.expthermflusci.2015.03.023.

    Article  Google Scholar 

  6. Lin, T., Ma, X., Quan, X., Cheng, P., and Chen, G., Enhanced Pool Boiling Heat Transfer on Freeze-Casted Surfaces, Int. J. Heat Mass Transfer, 2020, vol. 153, p. 119622; doi.org/10.1016/ j.ijheatmasstransfer.2020.119622.

    Article  Google Scholar 

  7. Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.

    Article  Google Scholar 

  8. Das, S., Kumar, D. S., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface, Appl. Thermal Engin., 2016, vol. 96, pp. 555–567; doi.org/10.1016/j.applthermaleng.2015.11.117.

    Article  Google Scholar 

  9. Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., and Sundén, B., Pool Boiling Heat Transfer of FC-72 on Pin-Fin Silicon Surfaces with Nanoparticle Deposition, Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 1019–1033; doi.org/10.1016/ j.ijheatmasstransfer.2018.05.033.

    Article  Google Scholar 

  10. Pontes, P., Cautela, R., Teodori, E., Moita, A., Liu, Y., Moreira, A.L.N., Nikulin, A., and del Barrio, E.P., Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces, Exp. Thermal Fluid Sci., 2020, vol. 115, p. 110088; doi.org/10.1016/j.expthermflusci.2020.110088.

    Article  Google Scholar 

  11. Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/ epjconf/201714302049.

    Article  Google Scholar 

  12. Arenales, M.R.M., Kumar, S., Kuo, L.S., and Chen, P.H., Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water, Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119399; doi.org/10.1016/ j.ijheatmasstransfer.2020.119399.

    Article  Google Scholar 

  13. Kumar, S., Chang, Y.W., and Chen, P.H., Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns, J. Visual. Exp., 2017, vol. 122, p. e55387; DOI:10.3791/55387

    Article  Google Scholar 

  14. Vladimirov, V.Yu. and Chinnov, E.A., Heat Transfer Enhancement when Boiling on Finned Surfaces, J. Phys.: Conf. Ser., 2021, vol. 1867, p. 012024; DOI:10.1088/1742-6596/1867/1/012024.

    Article  Google Scholar 

  15. Ma, X. and Cheng, P., Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 407–418; doi.org/10.1016/j.ijheatmasstransfer.2019.06.086.

    Article  Google Scholar 

  16. Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.

    Article  Google Scholar 

  17. Mo, D.C., Yang, S., Luo, J.L., Wang, Y.Q., and Lyu, S.S., Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transfer, 2020, vol. 157, p. 119867; doi.org/10.1016/j.ijheatmasstransfer.2020.119867.

    Article  Google Scholar 

  18. Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.

    Article  ADS  Google Scholar 

  19. Gregorčič, P., Zupančič, M., and Golobič, I., Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High- and Low-Surface-Tension Fluids, Sci. Rep., 2018, vol. 8, no. 7461, pp. 1–8; doi.org:10.1038/s41598-018-25843-5.

    Article  Google Scholar 

  20. Cao, Z., Wu, Z., Pham, A.D., Yang, Y., Abbood, S., Falkman, P., and Sundén, B., Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 548–560; doi.org/10.1016/j.ijheatmasstransfer.2018.12.140.

    Article  Google Scholar 

  21. Tran, N., Sajjad, U., Lin, R., and Wang, C.C., Effects of Surface Inclination and Type of Surface Roughness on the Nucleate Boiling Heat Transfer Performance of HFE-7200 Dielectric Fluid, Int. J. Heat Mass Transfer, 2020, vol. 147, p. 119015; doi.org/10.1016/j.ijheatmasstransfer.2019.119015.

    Article  Google Scholar 

  22. Manetti, L.L., Ribatski, G., de Souza, R.R., and Cardoso, E.M., Pool Boiling Heat Transfer of HFE-7100 on Metal Foams, Experimental Thermal and Fluid Science, 2020, vol. 113, p. 110025; doi.org/10.1016/ j.expthermflusci.2019.110025.

    Article  Google Scholar 

  23. Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.

  24. McGillis, W.R., Carey, V.P., Fitch, J.S., and Hamburgen, W.R., Pool Boiling Enhancement Techniques for Water at Low Pressure, in Procs. of the Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, 1991, no. 4000138, pp. 64–72; DOI:10.1109/STHERM.1991.152914.

  25. Rainey, K.N. and You, S.M., Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72, J. Heat Transfer, 2000, vol. 122, no. 3, pp. 509–516; doi.org/10.1115/ 1.1288708.

    Article  Google Scholar 

  26. Yu, C.K. and Lu, D.C., Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 17/18, pp. 3624–3637; doi.org/10.1016/ j.ijheatmasstransfer.2007.02.003.

    Article  Google Scholar 

  27. Shen, C., Zhang, C., Bao, Y., Wang, X., Liu, Y., and Ren, L., Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes, Int. J. Thermal Sci., 2018, vol. 130, pp. 47–58; doi.org/10.1016/j.ijthermalsci.2018.04.011.

    Article  Google Scholar 

  28. Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/ epjconf/201714302049.

  29. Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano Bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.

  30. Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.

  31. Khmel, S.Y., Baranov, E.A., Safonov, A.I., Vladimirov, V. Yu., and Chinnov, E.A., Experimental Study of Pool Boiling on Heaters with Nanomodified Surfaces under Saturation, Heat Transfer Engin., 2021, vol. 42, no. 22; DOI:10.1080/01457632.2021.2009211

    Article  ADS  Google Scholar 

  32. Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Experimental Study of Heat Transfer Enhancement in a Falling Film of R21 on an Array of Horizontal Tubes with MAO Coating, Int. Comm. Heat Mass Transfer, 2021, vol. 129, pp. 105743-1–105743-13.

    Article  Google Scholar 

  33. Pavlenko, A.N., Zhukov, V.E., and Mezentseva, N.N., Heat Dissipation and Critical Heat Flux on a Modified Surface at Boiling under Conditions of Natural Convection, Teplofiz. Aeromekh., 2022, vol. 29, no. 3, pp. 445–449.

    Article  Google Scholar 

  34. Sajjad, U., Sadeghianjahromi, A., Ali, H.M., and Wang, C.C., Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids-A Review on Enhancement Mechanisms, Int. Comm. Heat Mass Transfer, 2020, vol. 119, p. 104950; doi.org/10.1016/j.icheatmasstransfer.2020.104950.

    Article  Google Scholar 

  35. Li, X., Cole, I., and Tu, J., A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 20–33; doi.org/10.1016/ j.ijheatmasstransfer.2019.06.069.

    Article  Google Scholar 

  36. Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933; doi.org/10.1016/j.ijheatmasstransfer.2018.09.026.

    Article  Google Scholar 

  37. Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Thermal Engin., 2019, vol. 66, no. 12, pp. 881–915; doi.org/10.1134/S0040601519120012.

    Article  ADS  Google Scholar 

  38. Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer during Boiling, Optoel., Instr. Data Process., 2019, vol. 55, no. 6, pp. 554–563. DOI:10.3103/S8756699019060049.

    Article  ADS  Google Scholar 

  39. Zhukov, V.I., Pavlenko, A.N., and Shvetsov, D.A., The Effect of Pressure on Heat Transfer at Evaporation/Boiling in a Thin Horizontal Liquid Layer on a Microstructured Surface Produced by 3D Laser Printing, Int. J. Heat Mass Transfer, 2020, vol. 163; DOI:10.1134/S1810232813040012.

  40. Zhukov, V.E., Slesareva, E.Yu., and Pavlenko, A.N., Effect of Modification of Heat-Release Surface on Heat Transfer in Nucleate Boiling at Free Convection of Freon, J. Eng. Therm., 2021, vol. 30, pp. 1–13; https://doi.org/10.1134/S181023282101001X.

    Article  Google Scholar 

  41. Spalding, D.B., Heat Exchanger Design Handbook. Heat Exchanger Theory, Hemisphere, 1983.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zhukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.E., Mezentseva, N.N. & Pavlenko, A.N. Heat Transfer Enhancement on Surface Modified via Additive Manufacturing during Pool Boiling of Freon. J. Engin. Thermophys. 31, 551–562 (2022). https://doi.org/10.1134/S1810232822040014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822040014

Navigation