Skip to main content
Log in

On Determination of Temperature of Attainable Water Superheat: Issues of Experiment Procedure

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The article focuses on the features of a procedure for determination of the temperature of attainable water superheat (relative to the equilibrium line of liquid with vapor) at atmospheric pressure. A measurement protocol is proposed, which will make it possible to harmonize results obtained under different experimental conditions. As in the case of the protocol for measuring the thermal conductivity of nanofluids, the main emphasis is on the presentation and processing of raw experimental data. Incorrectness of the widely used term “superheat limit” in relation to determination of the temperature of attainable liquid superheat is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Terekhov,V.I., Kalinina, S.V., and Lemanov, V.V., The Mechanism of Heat Transfer in Nanofluids: State of the Art (Review), part 1, Thermophys. Aeromech., 2010, vol. 17, pp. 1–14.

    Article  ADS  Google Scholar 

  2. Tertsinidou, G., Assael, M.J., and Wakeham, W.A., The Apparent Thermal Conductivity of Liquids Containing Solid Particles of Nanometer Dimensions: A Critique, Int. J. Thermophys., 2015, vol. 36, pp. 1367–1396; https://doi.org/10.1007/s10765-015-1856-9.

    Article  ADS  Google Scholar 

  3. Rutin, S.B. and Skripov, P.V., Comments on “The Apparent Thermal Conductivity of Liquids Containing Solid Particles of Nanometer Dimensions: A Critique,” (Int. J. Thermophys., 36, 1367 (2015)), Int. J. Thermophys., 2016, vol. 37, p. 102; https://doi.org/10.1007/s10765-016-2108-3.

    Article  ADS  Google Scholar 

  4. Skripov, V.P., Metastable Liquids, New York: Halsted Press, 1974.

    Google Scholar 

  5. Molotova, I., Zabirov, A., Yagov, V., Vinogradov, M., Kanin, P., Molotov, I., and Antonov, N., Influence of Coolant and Material Properties on Cooling High-Temperature Steel Spheres in Subcooled Ethanol-Water Mixtures, Int. J. Therm. Sci., 2022, vol. 179, p. 107659; https://doi.org/10.1016/j.ijthermalsci.2022.107659.

    Article  Google Scholar 

  6. Pavlov, P.A. and Nikitin, E.D., Kinetics of Nucleation in Superheated Water, Teplofiz. Vys. Temp., 1980, vol. 18, no. 2, pp. 354–358.

    Google Scholar 

  7. Iida, Y., Okuyama, K., and Sakurai, K., Boiling Nucleation on a Very Small Film Heater Subjected to Extremely Rapid Heating,. Int. J. Heat Mass Transfer, 1994, vol. 37, pp. 2771–2780; https://doi.org/ 10.1016/0017-9310(94)90394-8.

    Article  Google Scholar 

  8. Ermakov, G.V., Lipnyagov, E.V., and Perminov, S.A., Classical Theory of Homogeneous Nucleation in Superheated Liquids and Its Experimental Verification, Thermophys. Aeromech., 2012, vol. 19, pp. 667–678.

    Article  ADS  Google Scholar 

  9. Rutin, S.B. and Skripov, P.V., Heat Transfer in Supercritical Fluids: Reconciling the Results of Pulse and Stationary Experiments, High Temp., 2021, vol. 59, nos. 2–6, pp. 245–252; DOI: 10.1134/ S0018151X21010120

    Article  Google Scholar 

  10. Igolnikov, A.A., Rutin, S.B., and Skripov, P.V., Short-term Measurements in Thermally-Induced Unstable States of Mixtures with LCST, Thermochim. Acta, 2021, vol. 695, p. 178815; https://doi.org/10.1016/ j.tca.2020.178815.

    Article  Google Scholar 

  11. Rutin, S.B., Igolnikov, A.A., and Skripov, P.V., Study of Heat Transfer to Supercritical Pressure Water across a Wide Range of Parameters in Pulse Heating Experiments, Appl. Therm. Eng., 2022, vol. 201, p. 117740; DOI: 10.1016/j.applthermaleng.2021.117740

    Article  Google Scholar 

  12. Cavicchi, R.E. and Avedisian, C.T., Bubble Nucleation, Growth and Surface Temperature Oscillations on a Rapidly Heated Microscale Surface Immersed in a Bulk Subcooled but Locally Superheated Liquid under Partial Vacuum, Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 5612–5622; https://doi.org/10.1016/ j.ijheatmasstransfer.2011.07.006.

    Article  Google Scholar 

  13. Glod, S., Poulikakos, D., Zhao, Z., and Yadigaroglu, G., An Investigation of Microscale Explosive Vaporization of Water on an Ultrathin Pt Wire, Int. J. Heat Mass Transfer, 2002, vol. 45, pp. 367–379; https://doi.org/10.1016/S0017-9310(01)00158-2.

    Article  Google Scholar 

  14. Ching, E.J., Avedisian, C.T., Carrier, M.J., Cavicchi, R.E., Young, J.R., and Land, B.R., Measurement of the Bubble Nucleation Temperature of Water on a Pulse-Heated Thin Platinum Film Supported by a Membrane Using a Low-Noise Bridge Circuit, Int. J. Heat Mass Transfer, 2014, vol. 79, pp. 82–93; https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.081.

    Article  Google Scholar 

  15. Hong, Y., Ashgriz, N., and Andrews, J., Experimental Study of Bubble Dynamics on a Micro Heater Induced by Pulse Heating, J. Heat Transfer, 2004, vol. 126, pp. 259–271; https://doi.org/10.1115/1.1650388.

    Article  Google Scholar 

  16. Kuznetsov, V.V. and Kozulin, I.A. Explosive Vaporization of a Water Layer on a Flat Microheater, J. Eng. Therm., 2010, vol. 19, pp. 102–109; https://doi.org/10.1134/S1810232810020062.

    Article  Google Scholar 

  17. Blander, M., Hengstenberg, D., and Katz, J.L., Bubble Nucleation in n-Pentane, n-Hexane, n-Pentane + Hexadecane Mixtures, and Water, J. Phys. Chem., 1971, vol. 76, no. 23, pp. 3613–3619.

    Article  Google Scholar 

  18. Chukanov, V.N. and Korobitsyn, B.A., Specifics of Nucleation in Superheated Water and Supersaturated Vapor, J. Eng. Therm., 2007, vol. 16, pp. 192–199; DOI: 10.1134/S1810232807030125

    Article  Google Scholar 

  19. Apfel, R.E., Water Superheated to 279.5 Degrees at Atmospheric Pressure, Nat. Phys. Sci., 1972, vol. 238, no. 82, pp. 63–64; https://doi.org/10.1038/physci238063a0.

    Article  ADS  Google Scholar 

  20. Castanet, G., Antonov, D.V., Strizhak, H.A., and Sazhin, S.S., Effects of Water Sub-Droplet Shift on the Start of Puffing/Micro-Explosion in Composite Fuel/Water Droplets, Int. J. Heat Mass Transfer, 2022, vol. 186, p. 122466; 10.1016/j.ijheatmasstransfer.2021.122466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Skripov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutin, S.B., Igolnikov, A.A. & Skripov, P.V. On Determination of Temperature of Attainable Water Superheat: Issues of Experiment Procedure. J. Engin. Thermophys. 31, 664–667 (2022). https://doi.org/10.1134/S1810232822040117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822040117

Navigation