Skip to main content
Log in

Numerical Simulation of the Effect of Evaporation of Liquid Droplets on Turbulence and Heat Transfer in a Droplet-Laden Flow behind a Backward-Facing Step

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The effect of evaporation of several types of liquid (water, ethanol, acetone, and glycerol) on the turbulence dynamics, propagation of the dispersed phase, and heat transfer in a backward-facing step for the droplet diameter \(d_{1}\) = 1–100 \(\mu\)m and mass fraction \(M_{L1}\) = 0–0.1 was studied numerically. The two-fluid two-temperature Euler model was used for calculation of the motion and heat transfer in the droplet-laden flow. The system of Reynolds-averaged Navier–Stokes equations (RANS) written down with consideration of the presence and evaporation of droplets of different liquids was used in the work. The turbulent kinetic energy of the carrier gas phase was described using the model of transfer of the Reynolds stress model with consideration of the two phases of the flow. The effect of suppression of the turbulence of the carrier gas phase is minimal for acetone droplets (more than 7%) and maximal for glycerol and water droplets (up to 15%). The heat transfer enhancement at the use of ethanol droplets is maximal (more than two times compared with the single-phase separated flow), and evaporation of acetone droplets led to minimum heat transfer intensification (up to 25%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Ruck, B. and Makiola, B., Particle Dispersion in a Single-Sided Backward-Facing Step Flow, Int. J. Multiphase Flow, 1988, vol. 14, pp. 787–800.

    Article  Google Scholar 

  2. Fessler, J.R. and Eaton, J.K. Turbulence Modification by Particles in a Backward-Facing Step Flow, J. Fluid Mech., 1999, vol. 314, pp. 97–117.

    Article  MATH  ADS  Google Scholar 

  3. McAndrew, D., Coppen, S., and Rogers, C.B., Measurements of Fluid Turbulence along the Path of a Particle in a Backward-Facing Step Flow, Int. J. Multiphase Flow, 2001, vol. 27, pp. 1517–1532.

    Article  MATH  Google Scholar 

  4. Zaichik, L.I., Kozelev, M.V., and Pershukov, V.A., Prediction of Turbulent Gas-Dispersed Channel Flow with Recirculation Zones, Fluid Dyn., 1994, vol. 29 pp. 65–75.

    Article  Google Scholar 

  5. Chan, C.K., Zhang, H.Q., and Lau, K.S., Numerical Simulation of Gas-Particle Flows behind a Backward-Facing Step Using an Improved Stochastic Separated Flow Model, J. Comput. Mech., 2001, vol. 27, pp. 412–417.

    Article  MATH  ADS  Google Scholar 

  6. Mohanarangam, K. and Tu, J.Y., Two-Fluid Model for Particle-Turbulence Interaction in a Backward-Facing Step, AIChE J., 2007, vol. 53, pp. 225–2264.

    Article  Google Scholar 

  7. Benavides, A. and Van Vachem, B., Eulerian–Eulerian Prediction of Dilute Turbulent Gas-Particle Flow in a Backward-Facing Step, Int. J. Heat Fluid Flow, 2009, vol. 30, pp. 452–461.

    Article  Google Scholar 

  8. Mukin, R.V. and Zaichik, L.I., Nonlinear Algebraic Reynolds Stress Model for Two-Phase Turbulent Flows Laden with Small Heavy Particles, Int. J. Heat Fluid Flow, 2012, vol. 33, pp. 81–91.

    Article  Google Scholar 

  9. Riella, M., Kahraman, R., and Tabor, G.R., Reynolds-Averaged Two-Fluid Model Prediction of Moderately Dilute Fluid-Particle Flow over a Backward-Facing Step, Int. J. Multiphase Flow, 2018, vol. 106, pp. 95–108.

    Article  MathSciNet  Google Scholar 

  10. Hishida K., Nagayasu T., and Maeda M., Augmentation of Convective Heat Transfer by an Effective Utilization of Droplet Inertia Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 1773–1785.

    Article  Google Scholar 

  11. Miyafuji, Y., Senaha, I., Oyakawa, K., and Hiwada, M., Enhancement of Heat Transfer at Downstream of a Backward-Facing Step by Mist Flow, in Proc. 2nd Int. Conf. on Jets, Wakes and Separated Flows ICJWSF-2008, Berlin, 2008.

  12. Pakhomov, M.A. and Terekhov, V.I., Comparison of the Eulerian and Lagrangian Approaches in Studying the Flow Pattern and Heat Transfer in a Separated Axisymmetric Turbulent Ga–Droplet Flow, J. Appl. Mech. Techn. Phys., 2013, vol. 54, no. 4, pp. 596–607.

    Article  MATH  ADS  Google Scholar 

  13. Lobanov, P., Pakhomov, M., and Terekhov, V., Experimental and Numerical Study of the Flow and Heat Transfer in a Bubbly Turbulent Flow in a Pipe with Sudden Expansion. Energies, 2019, vol. 12, p. 2735.

    Article  Google Scholar 

  14. Pakhomov, M.A. and Terekhov, V.I., Droplet Evaporation in a Two-Phase Mist Dilute Turbulent Flow behind a Backward-Facing Step, Water, 2021, vol. 13, p. 1335823.

  15. Balakhrisna, T., Ghosh, S., Das, G., and Das, P.K., Oil-Water Flows Through Sudden Contraction and Expansion in a Horizontal Pipe—Phase Distribution and Pressure Drop, Int. J. Multiphase Flow, 2010, vol. 36, pp. 13–24.

    Article  Google Scholar 

  16. Zhang, D. and Goharzadeh, A., Effect of Sudden Expansion on Two-Phase Flow in a Horizontal Pipe, Fluid Dyn., 2019, vol. 54, no. 1, pp. 123–136.

    Article  MATH  ADS  Google Scholar 

  17. Celis, G.E.O., Rosero, C.M.P., Loureiro, J.B.R., and Silva Freire, A.P., Breakup and Coalescence of Large and Small Bubbles in Sudden Expansions and Contractions in Vertical Pipes, Int. J. Multiphase Flow, 2021, vol. 137, p. 103548.

    Article  Google Scholar 

  18. Yua, K.F., Lau, K.S., and Chan, C.K., Numerical Simulation of Gas-Particle Flow in a Single-Side Backward-Facing Step Flow, J. Comp. Appl. Math., 2004, vol. 163, pp. 319–331.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Wang, B., Zhang, H.Q., and Wang, X.L., Large Eddy Simulation of Particle Response to Turbulence along Its Trajectory in a Backward-Facing Step Turbulent Flow, Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 415–420.

    Article  MATH  Google Scholar 

  20. Zhou, L.X. and Liu, Y., Two-Fluid LES and RANS Modeling of Sudden-Expansion Gas-Particle Flows, Powder Technol., 2018, vol. 323, pp. 4–50.

    Article  ADS  Google Scholar 

  21. Wang, H., Zhao, H., Guo, Z., He, Y., and Zheng, C., Lattice Boltzmann Method for Simulations of Gas-Particle Flows over a Backward-Facing Step, J. Comp. Phys., 2013, vol. 239, pp. 57–71.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Balachandar, S. and Eaton, J.K., Turbulent Dispersed Multiphase Flow Ann. Rev. Fluid Mech., 2010, vol. 42, pp. 111–133.

    Article  MATH  ADS  Google Scholar 

  23. Varaksin, A.Y., Collision of Particles and Droplets in Turbulent Two-Phase Flows, High Temp., 2019, vol. 57, no. 4, pp. 555–572.

    Article  Google Scholar 

  24. Pakhomov, M.A. and Terekhov, V.I., Second Moment Closure Modelling of Flow, Turbulence and Heat Transfer in Droplet-Laden Mist Flow in a Vertical Pipe with Sudden Expansion Int. J. Heat Mass Transfer, 2013, vol. 66, pp. 210–222.

    Article  Google Scholar 

  25. Fadai-Ghotbi, A., Manceau, R., and Boree, J., Revisiting URANS Computations of the Backward-Facing Step Flow Using Second Moment Closures. Influence of the Numerics, Flow, Turb. Combust., 2008, vol. 81, pp. 395–410.

    Article  MATH  Google Scholar 

  26. Nigmatulin, R.I., Dynamics of Multiphase Media, vol. 1, CRC Press, 1990.

    Google Scholar 

  27. Elghobashi, S., On Predicting Particle-Laden Flows, Appl. Sci. Res., 1994, vol. 52, pp. 309–329.

    Article  ADS  Google Scholar 

  28. Osiptsov, A.N., Mathematical Modeling of Dusty-Gas Boundary Layers, Appl. Mech. Rev., 1997, vol. 50, pp. 357–370.

  29. Thangam, S. and Speziale, C.S., Turbulent Flow past a Backward-Facing Step: A Critical Evaluation of Two-Equation Models, AIAA J., 1992, vol. 30, pp. 1314–1320.

    Article  ADS  Google Scholar 

  30. Zajkov, L.A., Strelets, M.Kh., and Shur, M.L., Comparison between One- and Two-Equation Differential Turbulence Models in Application to Separated and Attached Flows. Flow in a Channel with a Backward Facing Step, High Temp., 1996, vol. 34, no. 5, pp. 713–725.

  31. Derevich, I.V., Statistical Modelling of Mass Transfer in Turbulent Two-Phase Dispersed Flows, 1. Model Development, Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 3709–3723.

    Article  MATH  Google Scholar 

  32. Kutateladze, S.S. and Leont’ev, A.I., Heat and Mass Transfer in Turbulent Boundary Layer, New York: Hemisphere, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Pakhomov or V. I. Terekhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Terekhov, V.I. Numerical Simulation of the Effect of Evaporation of Liquid Droplets on Turbulence and Heat Transfer in a Droplet-Laden Flow behind a Backward-Facing Step. J. Engin. Thermophys. 31, 580–588 (2022). https://doi.org/10.1134/S1810232822040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822040051

Navigation