Skip to main content

Advertisement

Log in

Adipose Cells Induce Escape from an Engineered Human Breast Microtumor Independently of their Obesity Status

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Obesity is associated with increased breast cancer incidence, recurrence, and mortality. Adipocytes and adipose-derived stem cells (ASCs), two resident cell types in adipose tissue, accelerate the early stages of breast cancer progression. It remains unclear whether obesity plays a role in the subsequent escape of malignant breast cancer cells into the local circulation.

Methods

We engineered models of human breast tumors with adipose stroma that exhibited different obesity-specific alterations. We used these models to assess the invasion and escape of breast cancer cells into an empty, blind-ended cavity (as a mimic of a lymphatic vessel) for up to sixteen days.

Results

Lean and obese donor-derived adipose stroma hastened escape to similar extents. Moreover, a hypertrophic adipose stroma did not affect the rate of adipose-induced escape. When admixed directly into the model tumors, lean and obese donor-derived ASCs hastened escape similarly.

Conclusions

This study demonstrates that the presence of adipose cells, independently of the obesity status of the adipose tissue donor, hastens the escape of human breast cancer cells in multiple models of obesity-associated breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6

Similar content being viewed by others

Abbreviations

ASC:

Adipose-derived stem cell

BMI:

Body mass index

CM:

Conditioned medium

ECM:

Extracellular matrix

FFA:

Free fatty acid

IFP:

Interstitial fluid pressure

SMA:

Smooth muscle actin

SVF:

Stromal-vascular fraction

References

  1. Aherne, W. A., and M. S. Dunnill. Morphometry. London: Arnold Publishers, pp. 1–205, 1982.

    Google Scholar 

  2. Ahima, R. S., and J. S. Flier. Leptin. Annu. Rev. Physiol. 62:413–437, 2000.

    Article  Google Scholar 

  3. Balaban, S., R. F. Shearer, L. S. Lee, M. van Geldermalsen, M. Schreuder, H. C. Shtein, R. Cairns, K. C. Thomas, D. J. Fazakerley, T. Grewal, J. Holst, D. N. Saunders, and A. J. Hoy. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5:1, 2017.

    Article  Google Scholar 

  4. Barone, I., C. Giordano, D. Bonofiglio, S. Andò, and S. Catalano. The weight of obesity in breast cancer progression and metastasis: clinical and molecular perspectives. Semin. Cancer Biol. 60:274–284, 2020.

    Article  Google Scholar 

  5. Bousquenaud, M., F. Fico, G. Solinas, C. Rüegg, and A. Santamaria-Martínez. Obesity promotes the expansion of metastasis-initiating cells in breast cancer. Breast Cancer Res. 20:104, 2018.

    Article  Google Scholar 

  6. Calle, E. E., and R. Kaaks. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4:579–591, 2004.

    Article  Google Scholar 

  7. Chakarov, S., C. Blériot, and F. Ginhoux. Role of adipose tissue macrophages in obesity-related disorders. J. Exp. Med. 219:e20211948, 2022.

    Article  Google Scholar 

  8. Cinti, S., G. Mitchell, G. Barbatelli, I. Murano, E. Ceresi, E. Faloia, S. Wang, M. Fortier, A. S. Greenberg, and M. S. Obin. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid. Res. 46:2347–2355, 2005.

    Article  Google Scholar 

  9. Collins, J. M., M. J. Neville, K. E. Pinnick, L. Hodson, B. Ruyter, T. H. van Dijk, D. J. Reijngoud, M. D. Fielding, and K. N. Frayn. De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J. Lipid Res. 52:1683–1692, 2011.

    Article  Google Scholar 

  10. Colpaert, C., P. Vermeulen, E. Van Marck, and L. Dirix. The presence of a fibrotic focus is an independent predictor of early metastasis in lymph node-negative breast cancer patients. Am. J. Surg. Pathol. 25:1557–1558, 2001.

    Article  Google Scholar 

  11. Considine, R. V., M. K. Sinha, M. L. Heiman, A. Kriauciunas, T. W. Stephens, M. R. Nyce, J. P. Ohannesian, C. C. Marco, L. J. McKee, and T. L. Bauer. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334:292–295, 1996.

    Article  Google Scholar 

  12. Cozzo, A. J., A. M. Fuller, and L. Makowski. Contribution of adipose tissue to development of cancer. Compr. Physiol. 8:237–282, 2017.

    Article  Google Scholar 

  13. D’Esposito, V., F. Passaretti, A. Hammarstedt, D. Liguoro, D. Terracciano, G. Molea, L. Canta, C. Miele, U. Smith, F. Beguinot, and P. Formisano. Adipocyte-released insulin-like growth factor-1 is regulated by glucose and fatty acids and controls breast cancer cell growth in vitro. Diabetologia 55:2811–2822, 2012.

    Article  Google Scholar 

  14. Dance, Y. W., T. Meshulam, A. J. Seibel, M. C. Obenreder, M. D. Layne, C. M. Nelson, and J. Tien. Adipose stroma accelerates the invasion and escape of human breast cancer cells from an engineered microtumor. Cell. Mol. Bioeng. 15:15–29, 2022.

    Article  Google Scholar 

  15. Ewertz, M., M. B. Jensen, K. Gunnarsdóttir, I. Højris, E. H. Jakobsen, D. Nielsen, L. E. Stenbygaard, U. B. Tange, and S. Cold. Effect of obesity on prognosis after early-stage breast cancer. J. Clin. Oncol. 29:25–31, 2011.

    Article  Google Scholar 

  16. Fayanju, O. M., C. S. Hall, J. B. Bauldry, M. Karhade, L. M. Valad, H. M. Kuerer, S. M. DeSnyder, C. H. Barcenas, and A. Lucci. Body mass index mediates the prognostic significance of circulating tumor cells in inflammatory breast cancer. Am. J. Surg. 214:666–671, 2017.

    Article  Google Scholar 

  17. Fischbach, C., T. Spruss, B. Weiser, M. Neubauer, C. Becker, M. Hacker, A. Göpferich, and T. Blunk. Generation of mature fat pads in vitro and in vivo utilizing 3-D long-term culture of 3T3-L1 preadipocytes. Exp. Cell Res. 300:54–64, 2004.

    Article  Google Scholar 

  18. Gao, Y., X. Chen, Q. He, R. C. Gimple, Y. Liao, L. Wang, R. Wu, Q. Xie, J. N. Rich, K. Shen, and Z. Yuan. Adipocytes promote breast tumorigenesis through TAZ-dependent secretion of resistin. Proc. Natl. Acad. Sci. USA 117:33295–33304, 2020.

    Article  Google Scholar 

  19. Grasset, E. M., M. Dunworth, G. Sharma, M. Loth, J. Tandurella, A. Cimino-Mathews, M. Gentz, S. Bracht, M. Haynes, E. J. Fertig, and A. J. Ewald. Triple-negative breast cancer metastasis involves complex epithelial-mesenchymal transition dynamics and requires vimentin. Sci. Transl. Med. 14:eabn7571, 2022.

    Article  Google Scholar 

  20. Hammel, J. H., and E. Bellas. Endothelial cell crosstalk improves browning but hinders white adipocyte maturation in 3D engineered adipose tissue. Integr. Biol. 12:81–89, 2020.

    Article  Google Scholar 

  21. Hapach, L. A., S. P. Carey, S. C. Schwager, P. V. Taufalele, W. Wang, J. A. Mosier, N. Ortiz-Otero, T. J. McArdle, Z. E. Goldblatt, M. C. Lampi, F. Bordeleau, J. R. Marshall, I. M. Richardson, J. Li, M. R. King, and C. A. Reinhart-King. Phenotypic heterogeneity and metastasis of breast cancer cells. Cancer Res. 81:3649–3663, 2021.

    Article  Google Scholar 

  22. Harney, A. S., E. N. Arwert, D. Entenberg, Y. Wang, P. Guo, B. Z. Qian, M. H. Oktay, J. W. Pollard, J. G. Jones, and J. S. Condeelis. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5:932–943, 2015.

    Article  Google Scholar 

  23. Hildreth, A. D., F. Ma, Y. Y. Wong, R. Sun, M. Pellegrini, and T. E. O’Sullivan. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 22:639–653, 2021.

    Article  Google Scholar 

  24. Hodson, L., C. M. Skeaff, and B. A. Fielding. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 47:348–380, 2008.

    Article  Google Scholar 

  25. Hotamisligil, G. S., N. S. Shargill, and B. M. Spiegelman. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259:87–91, 1993.

    Article  Google Scholar 

  26. Hsiao, A. Y., T. Okitsu, H. Teramae, and S. Takeuchi. 3D tissue formation of unilocular adipocytes in hydrogel microfibers. Adv. Healthc. Mater. 5:548–556, 2016.

    Article  Google Scholar 

  27. Ioannidou, A., S. Alatar, R. Schipper, F. Baganha, M. Åhlander, A. Hornell, R. M. Fisher, and C. E. Hagberg. Hypertrophied human adipocyte spheroids as in vitro model of weight gain and adipose tissue dysfunction. J. Physiol. 600:869–883, 2022.

    Article  Google Scholar 

  28. Jackson, G. W., and D. F. James. The permeability of fibrous porous media. Can. J. Chem. Eng. 64:364–374, 1986.

    Article  Google Scholar 

  29. Jernås, M., J. Palming, K. Sjöholm, E. Jennische, P. A. Svensson, B. G. Gabrielsson, M. Levin, A. Sjögren, M. Rudemo, T. C. Lystig, B. Carlsson, L. M. Carlsson, and M. Lönn. Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J. 20:E832–E839, 2006.

    Article  Google Scholar 

  30. Kitsis, R. N., and L. A. Leinwand. Discordance between gene regulation in vitro and in vivo. Gene Exp. 2:313–318, 1992.

    Google Scholar 

  31. Kleinert, M., C. Clemmensen, S. M. Hofmann, M. C. Moore, S. Renner, S. C. Woods, P. Huypens, J. Beckers, M. H. de Angelis, A. Schürmann, M. Bakhti, M. Klingenspor, M. Heiman, A. D. Cherrington, M. Ristow, H. Lickert, E. Wolf, P. J. Havel, T. D. Müller, and M. H. Tschöp. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14:140–162, 2018.

    Article  Google Scholar 

  32. Lee, M. J., and S. K. Fried. Optimal protocol for the differentiation and metabolic analysis of human adipose stromal cells. Methods Enzymol. 538:49–65, 2014.

    Article  Google Scholar 

  33. Li, X., J. Xia, C. T. Nicolescu, M. W. Massidda, T. J. Ryan, and J. Tien. Engineering of microscale vascularized fat that responds to perfusion with lipoactive hormones. Biofabrication 11:014101, 2019.

    Article  Google Scholar 

  34. Ling, L., J. A. Mulligan, Y. Ouyang, A. A. Shimpi, R. M. Williams, G. F. Beeghly, B. D. Hopkins, J. A. Spector, S. G. Adie, and C. Fischbach. Obesity-associated adipose stromal cells promote breast cancer invasion through direct cell contact and ECM remodeling. Adv. Funct. Mater. 30:1910650, 2020.

    Article  Google Scholar 

  35. Lohmann, A. E., S. V. Soldera, I. Pimentel, D. Ribnikar, M. Ennis, E. Amir, and P. J. Goodwin. Association of obesity with breast cancer outcome in relation to cancer subtypes: a meta-analysis. J. Natl. Cancer Inst. 113:1465–1475, 2021.

    Article  Google Scholar 

  36. Lumeng, C. N., J. L. Bodzin, and A. R. Saltiel. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 117:175–184, 2007.

    Article  Google Scholar 

  37. Martin, A. D., M. Z. Daniel, D. T. Drinkwater, and J. P. Clarys. Adipose tissue density, estimated adipose lipid fraction and whole body adiposity in male cadavers. Int. J. Obes. Relat. Metab. Disord. 18:79–83, 1994.

    Google Scholar 

  38. Mazzarella, L., D. Disalvatore, V. Bagnardi, N. Rotmensz, D. Galbiati, S. Caputo, G. Curigliano, and P. G. Pelicci. Obesity increases the incidence of distant metastases in oestrogen receptor-negative human epidermal growth factor receptor 2-positive breast cancer patients. Eur. J. Cancer 49:3588–3597, 2013.

    Article  Google Scholar 

  39. McDowell, S. A. C., R. B. E. Luo, A. Arabzadeh, S. Doré, N. C. Bennett, V. Breton, E. Karimi, M. Rezanejad, R. R. Yang, K. D. Lach, M. S. M. Issac, B. Samborska, L. J. M. Perus, D. Moldoveanu, Y. Wei, B. Fiset, R. F. Rayes, I. R. Watson, L. Kazak, M. C. Guiot, P. O. Fiset, J. D. Spicer, A. J. Dannenberg, L. A. Walsh, and D. F. Quail. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat. Cancer 2:545–562, 2021.

    Article  Google Scholar 

  40. Mehta, A., A. M. Oeser, and M. G. Carlson. Rapid quantitation of free fatty acids in human plasma by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 719:9–23, 1998.

    Article  Google Scholar 

  41. Padmanaban, V., I. Krol, Y. Suhail, B. M. Szczerba, N. Aceto, J. S. Bader, and A. J. Ewald. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573:439–444, 2019.

    Article  Google Scholar 

  42. Pierobon, M., and C. L. Frankenfeld. Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res. Treat. 137:307–314, 2013.

    Article  Google Scholar 

  43. Piotrowski-Daspit, A. S., A. K. Simi, M. F. Pang, J. Tien, and C. M. Nelson. A 3D culture model to study how fluid pressure and flow affect the behavior of aggregates of epithelial cells. Methods Mol. Biol. 1501:245–257, 2017.

    Article  Google Scholar 

  44. Quail, D. F., and A. J. Dannenberg. The obese adipose tissue microenvironment in cancer development and progression. Nat. Rev. Endocrinol. 15:139–154, 2019.

    Article  Google Scholar 

  45. Rabhi, N., K. Desevin, A. C. Belkina, A. Tilston-Lunel, X. Varelas, M. D. Layne, and S. R. Farmer. Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors. Life Sci. Alliance 5:e202101286, 2022.

    Article  Google Scholar 

  46. Salans, L. B., S. W. Cushman, and R. E. Weismann. Studies of human adipose tissue. Adipose cell size and number in nonobese and obese patients. J. Clin. Investig. 52:929–941, 1973.

    Article  Google Scholar 

  47. Seo, B. R., P. Bhardwaj, S. Choi, J. Gonzalez, R. C. Andresen Eguiluz, K. Wang, S. Mohanan, P. G. Morris, B. Du, X. K. Zhou, L. T. Vahdat, A. Verma, O. Elemento, C. A. Hudis, R. M. Williams, D. Gourdon, A. J. Dannenberg, and C. Fischbach. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci. Transl. Med. 7:301ra130, 2015.

    Article  Google Scholar 

  48. Shen, J. X., M. Couchet, J. Dufau, T. de Castro Barbosa, M. H. Ulbrich, M. Helmstädter, A. M. Kemas, R. Zandi Shafagh, M. A. Marques, J. B. Hansen, N. Mejhert, D. Langin, M. Rydén, and V. M. Lauschke. 3D adipose tissue culture links the organotypic microenvironment to improved adipogenesis. Adv. Sci. 8:e2100106, 2021.

    Article  Google Scholar 

  49. Shi, Y., G. Zhang, Y. Wang, C. Ren, L. Wen, W. Zhu, X. Chen, and N. Liao. Presence of circulating tumor cells is associated with metabolic-related variables in postoperative patients with early-stage breast cancer. Chin. J. Cancer Res. 30:340–350, 2018.

    Article  Google Scholar 

  50. Soukas, A., N. D. Socci, B. D. Saatkamp, S. Novelli, and J. M. Friedman. Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J. Biol. Chem. 276:34167–34174, 2001.

    Article  Google Scholar 

  51. Tien, J., J. G. Truslow, and C. M. Nelson. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells. PLoS ONE. 7:e45191, 2012.

    Article  Google Scholar 

  52. Tien, J., Y. W. Dance, U. Ghani, A. J. Seibel, and C. M. Nelson. Interstitial hypertension suppresses escape of human breast tumor cells via convection of interstitial fluid. Cell. Mol. Bioeng. 14:147–159, 2021.

    Article  Google Scholar 

  53. Tiwari, P., A. Blank, C. Cui, K. Q. Schoenfelt, G. Zhou, Y. Xu, G. Khramtsova, F. Olopade, A. M. Shah, S. A. Khan, M. R. Rosner, and L. Becker. Metabolically activated adipose tissue macrophages link obesity to triple-negative breast cancer. J. Exp. Med. 216:1345–1358, 2019.

    Article  Google Scholar 

  54. Verboven, K., K. Wouters, K. Gaens, D. Hansen, M. Bijnen, S. Wetzels, C. D. Stehouwer, G. H. Goossens, C. G. Schalkwijk, E. E. Blaak, and J. W. Jocken. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep. 8:4677, 2018.

    Article  Google Scholar 

  55. Visser, T. D., J. L. Oud, and G. J. Brakenhoff. Refractive index and axial distance measurements in 3-D microscopy. Optik 90:17–19, 1992.

    Google Scholar 

  56. Wang, Y. Y., C. Attané, D. Milhas, B. Dirat, S. Dauvillier, A. Guerard, J. Gilhodes, I. Lazar, N. Alet, V. Laurent, S. Le Gonidec, D. Biard, C. Hervé, F. Bost, G. S. Ren, F. Bono, G. Escourrou, M. Prentki, L. Nieto, P. Valet, and C. Muller. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2:e87489, 2017.

    Article  Google Scholar 

  57. Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112:1796–1808, 2003.

    Article  Google Scholar 

  58. Wueest, S., R. A. Rapold, J. M. Rytka, E. J. Schoenle, and D. Konrad. Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high-fat fed mice. Diabetologia 52:541–546, 2009.

    Article  Google Scholar 

  59. Yang, F., A. Carmona, K. Stojkova, E. I. Garcia Huitron, A. Goddi, A. Bhushan, R. N. Cohen, and E. M. Brey. A 3D human adipose tissue model within a microfluidic device. Lab Chip 21:435–446, 2021.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by award U01 CA214292 from the National Cancer Institute and by award P30 DK046200 (Boston Nutrition Obesity Research Center; BNORC) from the National Institute of Diabetes and Digestive and Kidney Diseases. Y.W.D. was funded through the CURE Diversity Research Supplements Program at the National Cancer Institute, and M.C.O. was funded through the Undergraduate Research Opportunities Program at Boston University. Human breast-derived ASCs were provided by the Mayo Clinic Comprehensive Cancer Center and BNORC. We thank Miguel L. Batista, Jr. and Nabil Rabhi for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Celeste M. Nelson or Joe Tien.

Ethics declarations

Conflict of interest

Yoseph W. Dance, Mackenzie C. Obenreder, Alex J. Seibel, Tova Meshulam, Joshua W. Ogony, Nikhil Lahiri, Laura Pacheco-Spann, Derek C. Radisky, Matthew D. Layne, Stephen R. Farmer, Celeste M. Nelson, and Joe Tien declare that they have no conflict of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1622 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dance, Y.W., Obenreder, M.C., Seibel, A.J. et al. Adipose Cells Induce Escape from an Engineered Human Breast Microtumor Independently of their Obesity Status. Cel. Mol. Bioeng. 16, 23–39 (2023). https://doi.org/10.1007/s12195-022-00750-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-022-00750-y

Keywords

Navigation