Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 12, 2022

Current advances in stem cell therapy in the treatment of multiple sclerosis

  • Parnian Zolfaghari Baghbadorani , Amirmasoud Rayati Damavandi ORCID logo , Samira Moradi , Meysam Ahmadi , Peyman Bemani , Hamid Aria , Hossein Mottedayyen , Amirhossein Rayati Damavandi , Nahid Eskandari EMAIL logo and Farshid Fathi

Abstract

Multiple sclerosis (MS) is an inflammatory disease related to the central nervous system (CNS) with a significant global burden. In this illness, the immune system plays an essential role in its pathophysiology and progression. The currently available treatments are not recognized as curable options and, at best, might slow the progression of MS injuries to the CNS. However, stem cell treatment has provided a new avenue for treating MS. Stem cells may enhance CNS healing and regulate immunological responses. Likewise, stem cells can come from various sources, including adipose, neuronal, bone marrow, and embryonic tissues. Choosing the optimal cell source for stem cell therapy is still a difficult verdict. A type of stem cell known as mesenchymal stem cells (MSCs) is obtainable from different sources and has a strong immunomodulatory impact on the immune system. According to mounting data, the umbilical cord and adipose tissue may serve as appropriate sources for the isolation of MSCs. Human amniotic epithelial cells (hAECs), as novel stem cell sources with immune-regulatory effects, regenerative properties, and decreased antigenicity, can also be thought of as a new upcoming contender for MS treatment. Overall, the administration of stem cells in different sets of animal and clinical trials has shown immunomodulatory and neuroprotective results. Therefore, this review aims to discuss the different types of stem cells by focusing on MSCs and their mechanisms, which can be used to treat and improve the outcomes of MS disease.


Corresponding author: Nahid Eskandari, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran, E-mail:

  1. Author contributions: PZB conceived the presented subject after reading related articles and wrote the manuscript. ARD prepared the illustrations and, with PB, SM, and MA edited the initial version of the manuscript. HA and HM presented the subject and contributed to the final version edit. FF contributed to table preparation and with the help of Amirhossein RD revised the manuscript. NE supervised the process and critically revised the manuscript.

  2. Research funding: This research received no external funding.

  3. Conflict of interest statement: The authors declare no conflict of interest.

References

Abbaspanah, B., Reyhani, S., and Mousavi, S.H. (2021). Applications of umbilical cord derived mesenchymal stem cells in autoimmune and immunological disorders: from literature to clinical practice. Curr. Stem Cell Res. Ther. 16: 454–464. https://doi.org/10.2174/1574888x16999201124153000.Search in Google Scholar PubMed

Abdallah, A.N., Shamaa, A.A., and El-Tookhy, O.S. (2019). Evaluation of treatment of experimentally induced canine model of multiple sclerosis using laser activated non-expanded adipose derived stem cells. Res. Vet. Sci. 125: 71–81. https://doi.org/10.1016/j.rvsc.2019.05.016.Search in Google Scholar PubMed

Abi Chahine, N., Wehbe, T., Rashed, J., Hilal, R., and Elias, N. (2016). Autologous bone marrow derived stem cells for the treatment of multiple sclerosis. Int J Stem Cells 9: 207–212. https://doi.org/10.15283/ijsc16049.Search in Google Scholar PubMed PubMed Central

Acevedo, G., Padala, N.K., Ni, L., and Jonakait, G.M. (2013). Astrocytes inhibit microglial surface expression of dendritic cell-related co-stimulatory molecules through a contact-mediated process. J. Neurochem. 125: 575–587. https://doi.org/10.1111/jnc.12221.Search in Google Scholar PubMed PubMed Central

Aharonowiz, M., Einstein, O., Fainstein, N., Lassmann, H., Reubinoff, B., and Ben-Hur, T. (2008). Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One 3: e3145. https://doi.org/10.1371/journal.pone.0003145.Search in Google Scholar PubMed PubMed Central

Alessandrini, M., Preynat-Seauve, O., De Bruin, K., and Pepper, M.S. (2019). Stem cell therapy for neurological disorders. S. Afr. Med. J. 109: 70–77. https://doi.org/10.7196/samj.2019.v109i8b.14009.Search in Google Scholar

Amantea, D., Micieli, G., Tassorelli, C., Cuartero, M.I., Ballesteros, I., Certo, M., Moro, M.A., Lizasoain, I., and Bagetta, G. (2015). Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front. Neurosci. 9: 147. https://doi.org/10.3389/fnins.2015.00147.Search in Google Scholar PubMed PubMed Central

Andrzejewska, A., Dabrowska, S., Lukomska, B., and Janowski, M. (2021). Mesenchymal stem cells for neurological disorders. Adv. Sci. 8: 2002944. https://doi.org/10.1002/advs.202002944.Search in Google Scholar PubMed PubMed Central

Appleman, L.J. and Boussiotis, V.A. (2003). T cell anergy and costimulation. Immunol. Rev. 192: 161–180. https://doi.org/10.1034/j.1600-065x.2003.00009.x.Search in Google Scholar PubMed

Asgari Taei, A., Dargahi, L., Nasoohi, S., Hassanzadeh, G., Kadivar, M., and Farahmandfar, M. (2021). The conditioned medium of human embryonic stem cell-derived mesenchymal stem cells alleviates neurological deficits and improves synaptic recovery in experimental stroke. J. Cell. Physiol. 236: 1967–1979. https://doi.org/10.1002/jcp.29981.Search in Google Scholar PubMed

Baecher-Allan, C., Kaskow, B.J., and Weiner, H.L. (2018). Multiple sclerosis: mechanisms and immunotherapy. Neuron 97: 742–768. https://doi.org/10.1016/j.neuron.2018.01.021.Search in Google Scholar PubMed

Baek, S.J., Kang, S.K., and Ra, J.C. (2011). In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp. Mol. Med. 43: 596–603. https://doi.org/10.3858/emm.2011.43.10.069.Search in Google Scholar PubMed PubMed Central

Bai, L., Lennon, D.P., Eaton, V., Maier, K., Caplan, A.I., Miller, S.D., and Miller, R.H. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57: 1192–1203. https://doi.org/10.1002/glia.20841.Search in Google Scholar PubMed PubMed Central

Balasa, R., Barcutean, L., Mosora, O., and Manu, D. (2021). Reviewing the significance of blood-brain barrier disruption in multiple sclerosis pathology and treatment. Int. J. Mol. Sci. 22. https://doi.org/10.3390/ijms22168370.Search in Google Scholar PubMed PubMed Central

Barberi, T., Klivenyi, P., Calingasan, N.Y., Lee, H., Kawamata, H., Loonam, K., Perrier, A.L., Bruses, J., Rubio, M.E., Topf, N., et al.. (2003). Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21: 1200–1207. https://doi.org/10.1038/nbt870.Search in Google Scholar PubMed

Beecham, A.H., Patsopoulos, N.A., Xifara, D.K., Davis, M.F., Kemppinen, A., Cotsapas, C., Shah, T.S., Spencer, C., Booth, D., Goris, A., et al.. (2013). Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45: 1353–1360. https://doi.org/10.1038/ng.2770.Search in Google Scholar PubMed PubMed Central

Ben-Nun, A. and Lando, Z. (1983). Detection of autoimmune cells proliferating to myelin basic protein and selection of T cell lines that mediate experimental autoimmune encephalomyelitis (EAE) in mice. J. Immunol. 130: 1205–1209.10.4049/jimmunol.130.3.1205Search in Google Scholar

Ben-Nun, A., Wekerle, H., and Cohen, I.R. (1981). The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol. 11: 195–199. https://doi.org/10.1002/eji.1830110307.Search in Google Scholar PubMed

Beringer, A., Noack, M., and Miossec, P. (2016). IL-17 in chronic inflammation: from discovery to targeting. Trends Mol. Med. 22: 230–241. https://doi.org/10.1016/j.molmed.2016.01.001.Search in Google Scholar PubMed

Beurel, E., Harrington, L.E., Buchser, W., Lemmon, V., and Jope, R.S. (2014). Astrocytes modulate the polarization of CD4+ T cells to Th1 cells. PLoS One 9: e86257. https://doi.org/10.1371/journal.pone.0086257.Search in Google Scholar PubMed PubMed Central

Bonafede, R. and Mariotti, R. (2017). ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front. Cell. Neurosci. 11: 80. https://doi.org/10.3389/fncel.2017.00080.Search in Google Scholar PubMed PubMed Central

Bonsack, B., Kingsbury, C., Brown, J., and Borlongan, C.V. (2020). Editorial: mechanistic underpinnings of stem cell therapy for neurological disorders. Brain Res. 1729: 146643. https://doi.org/10.1016/j.brainres.2019.146643.Search in Google Scholar PubMed

Bowles, A.C., Wise, R.M., Gerstein, B.Y., Thomas, R.C., Ogelman, R., Febbo, I., and Bunnell, B.A. (2017). Immunomodulatory effects of adipose stromal vascular fraction cells promote alternative activation macrophages to repair tissue damage. Stem Cell. 35: 2198–2207. https://doi.org/10.1002/stem.2689.Search in Google Scholar PubMed

Brambilla, R. (2019). The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 137: 757–783. https://doi.org/10.1007/s00401-019-01980-7.Search in Google Scholar PubMed PubMed Central

Brown, C., McKee, C., Halassy, S., Kojan, S., Feinstein, D.L., and Chaudhry, G.R. (2021). Neural stem cells derived from primitive mesenchymal stem cells reversed disease symptoms and promoted neurogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Stem Cell Res. Ther. 12: 499. https://doi.org/10.1186/s13287-021-02563-8.Search in Google Scholar PubMed PubMed Central

Brück, W., Porada, P., Poser, S., Rieckmann, P., Hanefeld, F., Kretzschmar, H.A., and Lassmann, H. (1995). Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann. Neurol. 38: 788–796. https://doi.org/10.1002/ana.410380514.Search in Google Scholar PubMed

Bsibsi, M., Peferoen, L.A., Holtman, I.R., Nacken, P.J., Gerritsen, W.H., Witte, M.E., van Horssen, J., Eggen, B.J., van der Valk, P., Amor, S., et al.. (2014). Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol. 128: 215–229. https://doi.org/10.1007/s00401-014-1317-8.Search in Google Scholar PubMed

Butti, E., Bacigaluppi, M., Chaabane, L., Ruffini, F., Brambilla, E., Berera, G., Montonati, C., Quattrini, A., and Martino, G. (2019). Neural stem cells of the subventricular zone contribute to neuroprotection of the corpus callosum after cuprizone-induced demyelination. J. Neurosci. 39: 5481–5492. https://doi.org/10.1523/jneurosci.0227-18.2019.Search in Google Scholar

Caprnda, M., Kubatka, P., Gazdikova, K., Gasparova, I., Valentova, V., Stollarova, N., La Rocca, G., Kobyliak, N., Dragasek, J., Mozos, I., et al.. (2017). Immunomodulatory effects of stem cells: therapeutic option for neurodegenerative disorders. Biomed. Pharmacother. 91: 60–69. https://doi.org/10.1016/j.biopha.2017.04.034.Search in Google Scholar PubMed

Carlson, T., Kroenke, M., Rao, P., Lane, T.E., and Segal, B. (2008). The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J. Exp. Med. 205: 811–823. https://doi.org/10.1084/jem.20072404.Search in Google Scholar PubMed PubMed Central

Compston, A. and Coles, A. (2008). Multiple sclerosis. Lancet 372: 1502–1517. https://doi.org/10.1016/s0140-6736(08)61620-7.Search in Google Scholar PubMed

Connick, P., Kolappan, M., Patani, R., Scott, M.A., Crawley, C., He, X.L., Richardson, K., Barber, K., Webber, D.J., Wheeler-Kingshott, C.A., et al.. (2011). The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 12: 62. https://doi.org/10.1186/1745-6215-12-62.Search in Google Scholar PubMed PubMed Central

Cornet, A., Bettelli, E., Oukka, M., Cambouris, C., Avellana-Adalid, V., Kosmatopoulos, K., and Liblau, R.S. (2000). Role of astrocytes in antigen presentation and naive T-cell activation. J. Neuroimmunol. 106: 69–77. https://doi.org/10.1016/s0165-5728(99)00215-5.Search in Google Scholar PubMed

Cuascut, F.X. and Hutton, G.J. (2019). Stem cell-based therapies for multiple sclerosis: current perspectives. Biomedicines 7: 26. https://doi.org/10.3390/biomedicines7020026.Search in Google Scholar PubMed PubMed Central

Dabrowska, S., Andrzejewska, A., Strzemecki, D., Muraca, M., Janowski, M., and Lukomska, B. (2019). Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J. Neuroinflammation 16: 216. https://doi.org/10.1186/s12974-019-1602-5.Search in Google Scholar PubMed PubMed Central

Dahbour, S., Jamali, F., Alhattab, D., Al-Radaideh, A., Ababneh, O., Al-Ryalat, N., Al-Bdour, M., Hourani, B., Msallam, M., Rasheed, M., et al.. (2017). Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: clinical, ophthalmological and radiological assessments of safety and efficacy. CNS Neurosci. Ther. 23: 866–874. https://doi.org/10.1111/cns.12759.Search in Google Scholar PubMed PubMed Central

Dai, R., Wang, Z., Samanipour, R., Koo, K.I., and Kim, K. (2016). Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cell. Int. 2016: 6737345. https://doi.org/10.1155/2016/6737345.Search in Google Scholar PubMed PubMed Central

Dalamagkas, K., Tsintou, M., and Seifalian, A.M. (2018). Stem cells for spinal cord injuries bearing translational potential. Neural Regen. Res. 13: 35–42. https://doi.org/10.4103/1673-5374.224360.Search in Google Scholar PubMed PubMed Central

Danikowski, K.M., Jayaraman, S., and Prabhakar, B.S. (2017). Regulatory T cells in multiple sclerosis and myasthenia gravis. J. Neuroinflammation 14: 117. https://doi.org/10.1186/s12974-017-0892-8.Search in Google Scholar PubMed PubMed Central

Das Sarma, J., Ciric, B., Marek, R., Sadhukhan, S., Caruso, M.L., Shafagh, J., Fitzgerald, D.C., Shindler, K.S., and Rostami, A. (2009). Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J. Neuroinflammation 6: 14. https://doi.org/10.1186/1742-2094-6-14.Search in Google Scholar PubMed PubMed Central

Dendrou, C.A., Fugger, L., and Friese, M.A. (2015). Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15: 545–558. https://doi.org/10.1038/nri3871.Search in Google Scholar PubMed

Díaz-Prado, S., Muiños-López, E., Hermida-Gómez, T., Cicione, C., Rendal-Vázquez, M.E., Fuentes-Boquete, I., de Toro, F.J., and Blanco, F.J. (2011). Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation 81: 162–171.10.1016/j.diff.2011.01.005Search in Google Scholar PubMed

Ding, Y., Yang, H., Feng, J.B., Qiu, Y., Li, D.S., and Zeng, Y. (2013). Human umbilical cord-derived MSC culture: the replacement of animal sera with human cord blood plasma. In Vitro Cell. Dev. Biol. Anim. 49: 771–777. https://doi.org/10.1007/s11626-013-9663-8.Search in Google Scholar PubMed

Dombrowski, Y., O’Hagan, T., Dittmer, M., Penalva, R., Mayoral, S.R., Bankhead, P., Fleville, S., Eleftheriadis, G., Zhao, C., Naughton, M., et al.. (2017). Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 20: 674–680. https://doi.org/10.1038/nn.4528.Search in Google Scholar PubMed PubMed Central

Dominguez-Villar, M., Baecher-Allan, C.M., and Hafler, D.A. (2011). Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17: 673–675. https://doi.org/10.1038/nm.2389.Search in Google Scholar PubMed PubMed Central

Dos Passos, G.R., Sato, D.K., Becker, J., and Fujihara, K. (2016). Th17 cells pathways in multiple sclerosis and neuromyelitis optica spectrum disorders: pathophysiological and therapeutic implications. Mediat. Inflamm. 2016: 5314541. https://doi.org/10.1155/2016/5314541.Search in Google Scholar PubMed PubMed Central

Douvaras, P., Wang, J., Zimmer, M., Hanchuk, S., O’Bara, M.A., Sadiq, S., Sim, F.J., Goldman, J., and Fossati, V. (2014). Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Rep. 3: 250–259. https://doi.org/10.1016/j.stemcr.2014.06.012.Search in Google Scholar PubMed PubMed Central

Du Toit, A. (2022). EBV linked to multiple sclerosis. Nat. Rev. Microbiol. 20: 189. https://doi.org/10.1038/s41579-022-00701-4.Search in Google Scholar PubMed

Duffy, M.M., Ritter, T., Ceredig, R., and Griffin, M.D. (2011). Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res. Ther. 2: 34. https://doi.org/10.1186/scrt75.Search in Google Scholar PubMed PubMed Central

Duffy, S.S., Keating, B.A., and Moalem-Taylor, G. (2019). Adoptive transfer of regulatory T cells as a promising immunotherapy for the treatment of multiple sclerosis. Front. Neurosci. 13: 1107. https://doi.org/10.3389/fnins.2019.01107.Search in Google Scholar PubMed PubMed Central

Dulamea, A.O. (2017). The contribution of oligodendrocytes and oligodendrocyte progenitor cells to central nervous system repair in multiple sclerosis: perspectives for remyelination therapeutic strategies. Neural Regen. Res. 12: 1939–1944. https://doi.org/10.4103/1673-5374.221146.Search in Google Scholar PubMed PubMed Central

Evans, M.A., Lim, R., Kim, H.A., Chu, H.X., Gardiner-Mann, C.V., Taylor, K.W.E., Chan, C.T., Brait, V.H., Lee, S., Dinh, Q.N., et al.. (2018). Acute or delayed systemic administration of human amnion epithelial cells improves outcomes in experimental stroke. Stroke 49: 700–709. https://doi.org/10.1161/strokeaha.117.019136.Search in Google Scholar PubMed

Fan, X., Wang, J.Z., Lin, X.M., and Zhang, L. (2017). Stem cell transplantation for spinal cord injury: a meta-analysis of treatment effectiveness and safety. Neural Regen. Res. 12: 815–825. https://doi.org/10.4103/1673-5374.206653.Search in Google Scholar PubMed PubMed Central

Feng, J., Offerman, E., Lin, J., Fisher, E., Planchon, S.M., Sakaie, K., Lowe, M., Nakamura, K., Cohen, J.A., and Ontaneda, D. (2019). Exploratory MRI measures after intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 5: 2055217319856035. https://doi.org/10.1177/2055217319856035.Search in Google Scholar PubMed PubMed Central

Fernández, O., Izquierdo, G., Fernández, V., Leyva, L., Reyes, V., Guerrero, M., León, A., Arnaiz, C., Navarro, G., Páramo, M.D., et al.. (2018). Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: a triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS One 13: e0195891.10.1371/journal.pone.0195891Search in Google Scholar PubMed PubMed Central

Fletcher, J.M., Lalor, S.J., Sweeney, C.M., Tubridy, N., and Mills, K.H. (2010). T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162: 1–11. https://doi.org/10.1111/j.1365-2249.2010.04143.x.Search in Google Scholar PubMed PubMed Central

Freedman, M.S., Bar-Or, A., Atkins, H.L., Karussis, D., Frassoni, F., Lazarus, H., Scolding, N., Slavin, S., Le Blanc, K., and Uccelli, A. (2010). The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult. Scler. 16: 503–510. https://doi.org/10.1177/1352458509359727.Search in Google Scholar PubMed

Fukuchi, Y., Nakajima, H., Sugiyama, D., Hirose, I., Kitamura, T., and Tsuji, K. (2004). Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cell. 22: 649–658. https://doi.org/10.1634/stemcells.22-5-649.Search in Google Scholar PubMed

Ganz, J., Arie, I., Ben-Zur, T., Dadon-Nachum, M., Pour, S., Araidy, S., Pitaru, S., and Offen, D. (2014). Astrocyte-like cells derived from human oral mucosa stem cells provide neuroprotection in vitro and in vivo. Stem Cells Transl. Med. 3: 375–386. https://doi.org/10.5966/sctm.2013-0074.Search in Google Scholar PubMed PubMed Central

Ghasemi, N. (2015). Therapeutic effects of adipose derived mesenchymal stem cells on remyelination process in inflammatory demyelinating diseases. J. Histol. Histopathol. 2. https://doi.org/10.7243/2055-091x-2-8.Search in Google Scholar

Giacoppo, S., Bramanti, P., and Mazzon, E. (2017). The transplantation of mesenchymal stem cells derived from unconventional sources: an innovative approach to multiple sclerosis therapy. Arch. Immunol. Ther. Exp. 65: 363–379. https://doi.org/10.1007/s00005-017-0460-z.Search in Google Scholar PubMed

Giunti, D., Marini, C., Parodi, B., Usai, C., Milanese, M., Bonanno, G., Kerlero de Rosbo, N., and Uccelli, A. (2021). Role of miRNAs shuttled by mesenchymal stem cell-derived small extracellular vesicles in modulating neuroinflammation. Sci. Rep. 11: 1740. https://doi.org/10.1038/s41598-021-81039-4.Search in Google Scholar PubMed PubMed Central

Gnanasegaran, N., Govindasamy, V., Simon, C., Gan, Q.F., Vincent-Chong, V.K., Mani, V., Krishnan Selvarajan, K., Subramaniam, V., Musa, S., and Abu Kasim, N.H. (2017). Effect of dental pulp stem cells in MPTP-induced old-aged mice model. Eur. J. Clin. Invest. 47: 403–414. https://doi.org/10.1111/eci.12753.Search in Google Scholar PubMed

Goodarzi, P., Falahzadeh, K., Aghayan, H., Payab, M., Larijani, B., Alavi-Moghadam, S., Tayanloo-Beik, A., Adibi, H., Gilany, K., and Arjmand, B. (2019). Therapeutic abortion and ectopic pregnancy: alternative sources for fetal stem cell research and therapy in Iran as an Islamic country. Cell Tissue Bank. 20: 11–24. https://doi.org/10.1007/s10561-018-9741-y.Search in Google Scholar PubMed

Grant, C.R., Liberal, R., Mieli-Vergani, G., Vergani, D., and Longhi, M.S. (2015). Regulatory T-cells in autoimmune diseases: challenges, controversies and--yet--unanswered questions. Autoimmun. Rev. 14: 105–116. https://doi.org/10.1016/j.autrev.2014.10.012.Search in Google Scholar PubMed

Gu, J., Gu, W., Lin, C., Gu, H., Wu, W., Yin, J., Ni, J., Pei, X., Sun, M., Wang, F., et al.. (2015). Human umbilical cord mesenchymal stem cells improve the immune-associated inflammatory and prothrombotic state in collagen type-α-induced arthritic rats. Mol. Med. Rep. 12: 7463–7470. https://doi.org/10.3892/mmr.2015.4394.Search in Google Scholar PubMed

Guha, P., Morgan, J.W., Mostoslavsky, G., Rodrigues, N.P., and Boyd, A.S. (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 12: 407–412. https://doi.org/10.1016/j.stem.2013.01.006.Search in Google Scholar PubMed

Harrell, C.R., Jovicic, N., Djonov, V., Arsenijevic, N., and Volarevic, V. (2019). Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells 8: 1605. https://doi.org/10.3390/cells8121605.Search in Google Scholar PubMed PubMed Central

Hu, R., Lv, W., Zhang, S., Liu, Y., Sun, B., Meng, Y., Kong, Q., Mu, L., Wang, G., Zhang, Y., et al.. (2021). Combining miR-23b exposure with mesenchymal stem cell transplantation enhances therapeutic effects on EAE. Immunol. Lett. 229: 18–26. https://doi.org/10.1016/j.imlet.2020.11.007.Search in Google Scholar PubMed

Huan, J., Culbertson, N., Spencer, L., Bartholomew, R., Burrows, G.G., Chou, Y.K., Bourdette, D., Ziegler, S.F., Offner, H., and Vandenbark, A.A. (2005). Decreased FOXP3 levels in multiple sclerosis patients. J. Neurosci. Res. 81: 45–52. https://doi.org/10.1002/jnr.20522.Search in Google Scholar PubMed

Imitola, J. (2019). Regenerative neuroimmunology: the impact of immune and neural stem cell interactions for translation in neurodegeneration and repair. J. Neuroimmunol. 331: 1–3. https://doi.org/10.1016/j.jneuroim.2019.04.008.Search in Google Scholar PubMed

Insausti, C.L., Blanquer, M., García-Hernández, A.M., Castellanos, G., and Moraleda, J.M. (2014). Amniotic membrane-derived stem cells: immunomodulatory properties and potential clinical application. Stem Cells Cloning 7: 53–63. https://doi.org/10.2147/sccaa.s58696.Search in Google Scholar PubMed PubMed Central

Jafarzadeh Bejargafshe, M., Hedayati, M., Zahabiasli, S., Tahmasbpour, E., Rahmanzadeh, S., and Nejad-Moghaddam, A. (2019). Safety and efficacy of stem cell therapy for treatment of neural damage in patients with multiple sclerosis. Stem Cell Invest. 6: 44. https://doi.org/10.21037/sci.2019.10.06.Search in Google Scholar PubMed PubMed Central

Jahanbazi Jahan-Abad, A., Karima, S., Sahab Negah, S., Noorbakhsh, F., Borhani-Haghighi, M., and Gorji, A. (2019). Therapeutic potential of conditioned medium derived from oligodendrocytes cultured in a self-assembling peptide nanoscaffold in experimental autoimmune encephalomyelitis. Brain Res. 1711: 226–235. https://doi.org/10.1016/j.brainres.2019.01.035.Search in Google Scholar PubMed

Jiang, H., Zhang, Y., Tian, K., Wang, B., and Han, S. (2017). Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells. Sci. Rep. 7: 41837. https://doi.org/10.1038/srep41837.Search in Google Scholar PubMed PubMed Central

Kang, Z., Wang, C., Zepp, J., Wu, L., Sun, K., Zhao, J., Chandrasekharan, U., DiCorleto, P.E., Trapp, B.D., Ransohoff, R.M., et al.. (2013). Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells. Nat. Neurosci. 16: 1401–1408. https://doi.org/10.1038/nn.3505.Search in Google Scholar PubMed PubMed Central

Karlupia, N., Manley, N.C., Prasad, K., Schäfer, R., and Steinberg, G.K. (2014). Intraarterial transplantation of human umbilical cord blood mononuclear cells is more efficacious and safer compared with umbilical cord mesenchymal stromal cells in a rodent stroke model. Stem Cell Res. Ther. 5: 45. https://doi.org/10.1186/scrt434.Search in Google Scholar PubMed PubMed Central

Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J.M., Kassis, I., Bulte, J.W., Petrou, P., Ben-Hur, T., Abramsky, O., et al.. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67: 1187–1194. https://doi.org/10.1001/archneurol.2010.248.Search in Google Scholar PubMed PubMed Central

Karussis, D., Kassis, I., Kurkalli, B.G., and Slavin, S. (2008). Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J. Neurol. Sci. 265: 131–135. https://doi.org/10.1016/j.jns.2007.05.005.Search in Google Scholar PubMed

Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., Giuliani, F., Arbour, N., Becher, B., and Prat, A. (2007). Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13: 1173–1175. https://doi.org/10.1038/nm1651.Search in Google Scholar PubMed PubMed Central

Kim, H., Walczak, P., Kerr, C., Galpoththawela, C., Gilad, A.A., Muja, N., and Bulte, J.W. (2012). Immunomodulation by transplanted human embryonic stem cell-derived oligodendroglial progenitors in experimental autoimmune encephalomyelitis. Stem Cell. 30: 2820–2829. https://doi.org/10.1002/stem.1218.Search in Google Scholar PubMed PubMed Central

Kokaia, Z. and Lindvall, O. (2018). Sensors of succinate: neural stem cell grafts fight neuroinflammation. Cell Stem Cell 22: 283–285. https://doi.org/10.1016/j.stem.2018.01.019.Search in Google Scholar PubMed

Kuhlmann, T., Lingfeld, G., Bitsch, A., Schuchardt, J., and Brück, W. (2002). Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125: 2202–2212. https://doi.org/10.1093/brain/awf235.Search in Google Scholar PubMed

Kunkl, M., Frascolla, S., Amormino, C., Volpe, E., and Tuosto, L. (2020). T helper cells: the modulators of inflammation in multiple sclerosis. Cells 9: 482. https://doi.org/10.3390/cells9020482.Search in Google Scholar PubMed PubMed Central

Laroni, A., de Rosbo, N.K., and Uccelli, A. (2015). Mesenchymal stem cells for the treatment of neurological diseases: immunoregulation beyond neuroprotection. Immunol. Lett. 168: 183–190. https://doi.org/10.1016/j.imlet.2015.08.007.Search in Google Scholar PubMed

Lassmann, H. (2018). Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8: a028936. https://doi.org/10.1101/cshperspect.a028936.Search in Google Scholar PubMed PubMed Central

Laterza, C., Merlini, A., De Feo, D., Ruffini, F., Menon, R., Onorati, M., Fredrickx, E., Muzio, L., Lombardo, A., Comi, G., et al.. (2013). iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nat. Commun. 4: 2597. https://doi.org/10.1038/ncomms3597.Search in Google Scholar PubMed

Leary, S.M., Porter, B., and Thompson, A.J. (2005). Multiple sclerosis: diagnosis and the management of acute relapses. Postgrad. Med. J. 81: 302–308. https://doi.org/10.1136/pgmj.2004.029413.Search in Google Scholar PubMed PubMed Central

Lee, A.S., Tang, C., Rao, M.S., Weissman, I.L., and Wu, J.C. (2013). Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 19: 998–1004. https://doi.org/10.1038/nm.3267.Search in Google Scholar PubMed PubMed Central

Lee, S.T., Chu, K., Jung, K.H., Kim, S.J., Kim, D.H., Kang, K.M., Hong, N.H., Kim, J.H., Ban, J.J., Park, H.K., et al.. (2008). Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131: 616–629. https://doi.org/10.1093/brain/awm306.Search in Google Scholar PubMed

Legroux, L. and Arbour, N. (2015). Multiple sclerosis and T lymphocytes: an entangled story. J. Neuroimmune Pharmacol. 10: 528–546. https://doi.org/10.1007/s11481-015-9614-0.Search in Google Scholar PubMed PubMed Central

Li, H., Deng, Y., Liang, J., Huang, F., Qiu, W., Zhang, M., Long, Y., Hu, X., Lu, Z., Liu, W., et al.. (2019a). Mesenchymal stromal cells attenuate multiple sclerosis via IDO-dependent increasing the suppressive proportion of CD5+ IL-10+ B cells. Postgrad. Med. J. 11: 5673–5688.Search in Google Scholar

Li, Z., Liu, F., He, X., Yang, X., Shan, F., and Feng, J. (2019b). Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int. Immunopharm. 67: 268–280. https://doi.org/10.1016/j.intimp.2018.12.001.Search in Google Scholar PubMed

Li, H., Niederkorn, J.Y., Neelam, S., Mayhew, E., Word, R.A., McCulley, J.P., and Alizadeh, H. (2005). Immunosuppressive factors secreted by human amniotic epithelial cells. Invest. Ophthalmol. Vis. Sci. 46: 900–907. https://doi.org/10.1167/iovs.04-0495.Search in Google Scholar PubMed

Li, J., Chen, Y., Chen, Z., Huang, Y., Yang, D., Su, Z., Weng, Y., Li, X., and Zhang, X. (2017a). Therapeutic effects of human adipose tissue-derived stem cell (hADSC) transplantation on experimental autoimmune encephalomyelitis (EAE) mice. Sci. Rep. 7: 42695. https://doi.org/10.1038/srep42695.Search in Google Scholar PubMed PubMed Central

Li, X., Zhang, Y., Yan, Y., Ciric, B., Ma, C.G., Chin, J., Curtis, M., Rostami, A., and Zhang, G.X. (2017b). LINGO-1-Fc-transduced neural stem cells are effective therapy for chronic stage experimental autoimmune encephalomyelitis. Mol. Neurobiol. 54: 4365–4378. https://doi.org/10.1007/s12035-016-9994-z.Search in Google Scholar PubMed

Li, Y.F., Zhang, S.X., Ma, X.W., Xue, Y.L., Gao, C., and Li, X.Y. (2017c). Levels of peripheral Th17 cells and serum Th17-related cytokines in patients with multiple sclerosis: a meta-analysis. Mult. Scler Relat. Disord. 18: 20–25. https://doi.org/10.1016/j.msard.2017.09.003.Search in Google Scholar PubMed

Li, Y., Duan, X., Chen, Y., Liu, B., and Chen, G. (2022). Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. Int. J. Oral Sci. 14: 2. https://doi.org/10.1038/s41368-021-00152-2.Search in Google Scholar PubMed PubMed Central

Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., Bennett, F.C., Bohlen, C.J., Schirmer, L., Bennett, M.L., Münch, A.E., Chung, W.S., Peterson, T.C., et al.. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481–487. https://doi.org/10.1038/nature21029.Search in Google Scholar PubMed PubMed Central

Liu, X., Ren, S., Qu, X., Ge, C., Cheng, K., and Zhao, R.C. (2015). Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-γ-mediated SOCS3 activation. Immunol. Res. 61: 219–229. https://doi.org/10.1007/s12026-014-8612-2.Search in Google Scholar PubMed

Liu, Y., Carlsson, R., Comabella, M., Wang, J., Kosicki, M., Carrion, B., Hasan, M., Wu, X., Montalban, X., Dziegiel, M.H., et al.. (2014a). FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat. Med. 20: 272–282. https://doi.org/10.1038/nm.3485.Search in Google Scholar PubMed

Liu, Y.H., Chan, J., Vaghjiani, V., Murthi, P., Manuelpillai, U., and Toh, B.H. (2014b). Human amniotic epithelial cells suppress relapse of corticosteroid-remitted experimental autoimmune disease. Cytotherapy 16: 535–544. https://doi.org/10.1016/j.jcyt.2013.10.007.Search in Google Scholar PubMed

Liu, Y., Ma, Y., Du, B., Wang, Y., Yang, G.Y., and Bi, X. (2020). Mesenchymal stem cells attenuated blood-brain barrier disruption via downregulation of aquaporin-4 expression in EAE mice. Mol. Neurobiol. 57: 3891–3901. https://doi.org/10.1007/s12035-020-01998-z.Search in Google Scholar PubMed PubMed Central

Liu, Y.H., Vaghjiani, V., Tee, J.Y., To, K., Cui, P., Oh, D.Y., Manuelpillai, U., Toh, B.H., and Chan, J. (2012). Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PLoS One 7: e35758. https://doi.org/10.1371/journal.pone.0035758.Search in Google Scholar PubMed PubMed Central

Llufriu, S., Sepúlveda, M., Blanco, Y., Marín, P., Moreno, B., Berenguer, J., Gabilondo, I., Martínez-Heras, E., Sola-Valls, N., Arnaiz, J.A., et al.. (2014). Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One 9: e113936. https://doi.org/10.1371/journal.pone.0113936.Search in Google Scholar PubMed PubMed Central

Lu, P. (2017). Stem cell transplantation for spinal cord injury repair. Prog. Brain Res. 231: 1–32. https://doi.org/10.1016/bs.pbr.2016.11.012.Search in Google Scholar PubMed

Lu, Z., Chang, W., Meng, S., Xu, X., Xie, J., Guo, F., Yang, Y., Qiu, H., and Liu, L. (2019). Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury. Stem Cell Res. Ther. 10: 372. https://doi.org/10.1186/s13287-019-1488-2.Search in Google Scholar PubMed PubMed Central

Lu, Z., Zhao, H., Xu, J., Zhang, Z., Zhang, X., Zhang, Y., Liu, Z., and Xu, Y. (2013). Human umbilical cord mesenchymal stem cells in the treatment of secondary progressive multiple sclerosis. J. Stem Cell Res. Ther. 6, https://doi.org/10.4172/2157-7633.S6-002.Search in Google Scholar

Lucchinetti, C., Brück, W., Parisi, J., Scheithauer, B., Rodriguez, M., and Lassmann, H. (2000). Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47: 707–717. https://doi.org/10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q.10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-QSearch in Google Scholar

Maeda, Y., Nakagomi, N., Nakano-Doi, A., Ishikawa, H., Tatsumi, Y., Bando, Y., Yoshikawa, H., Matsuyama, T., Gomi, F., and Nakagomi, T. (2019). Potential of adult endogenous neural stem/progenitor cells in the spinal cord to contribute to remyelination in experimental autoimmune encephalomyelitis. Cells 8: 1025. https://doi.org/10.3390/cells8091025.Search in Google Scholar

Maggini, J., Mirkin, G., Bognanni, I., Holmberg, J., Piazzón, I.M., Nepomnaschy, I., Costa, H., Cañones, C., Raiden, S., Vermeulen, M., et al.. (2010). Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5: e9252. https://doi.org/10.1371/journal.pone.0009252.Search in Google Scholar

Markarian, C.F., Frey, G.Z., Silveira, M.D., Chem, E.M., Milani, A.R., Ely, P.B., Horn, A.P., Nardi, N.B., and Camassola, M. (2014). Isolation of adipose-derived stem cells: a comparison among different methods. Biotechnol. Lett. 36: 693–702. https://doi.org/10.1007/s10529-013-1425-x.Search in Google Scholar

Martínez-Larrosa, J., Matute-Blanch, C., Montalban, X., and Comabella, M. (2020). Modelling multiple sclerosis using induced pluripotent stem cells. J. Neuroimmunol. 349: 577425. https://doi.org/10.1016/j.jneuroim.2020.577425.Search in Google Scholar PubMed

Mazini, L., Rochette, L., Amine, M., and Malka, G. (2019). Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int. J. Mol. Sci. 20: 2523. https://doi.org/10.3390/ijms20102523.Search in Google Scholar PubMed PubMed Central

Mazzini, L., Vercelli, A., Ferrero, I., Boido, M., Cantello, R., and Fagioli, F. (2012). Transplantation of mesenchymal stem cells in ALS. Prog. Brain Res. 201: 333–359. https://doi.org/10.1016/b978-0-444-59544-7.00016-0.Search in Google Scholar

McDonald, C.A., Payne, N.L., Sun, G., Moussa, L., Siatskas, C., Lim, R., Wallace, E.M., Jenkin, G., and Bernard, C.C. (2015). Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. J. Neuroinflammation 12: 112. https://doi.org/10.1186/s12974-015-0322-8.Search in Google Scholar PubMed PubMed Central

McIntyre, L.L., Greilach, S.A., Othy, S., Sears-Kraxberger, I., Wi, B., Ayala-Angulo, J., Vu, E., Pham, Q., Silva, J., Dang, K., et al.. (2020). Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiol. Dis. 140: 104868. https://doi.org/10.1016/j.nbd.2020.104868.Search in Google Scholar PubMed PubMed Central

Meng, M., Liu, Y., Wang, W., Wei, C., Liu, F., Du, Z., Xie, Y., Tang, W., Hou, Z., and Li, Q. (2018). Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis. Postgrad. Med. J. 10: 212–223.Search in Google Scholar

Meng, X.T., Chen, D., Dong, Z.Y., and Liu, J.M. (2007). Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cell co-culture. Cell Biol. Int. 31: 691–698. https://doi.org/10.1016/j.cellbi.2006.11.038.Search in Google Scholar PubMed

Mert, T., Kurt, A.H., Altun, İ., Celik, A., Baran, F., and Gunay, I. (2017). Pulsed magnetic field enhances therapeutic efficiency of mesenchymal stem cells in chronic neuropathic pain model. Bioelectromagnetics 38: 255–264. https://doi.org/10.1002/bem.22038.Search in Google Scholar PubMed

Mohyeddin Bonab, M., Yazdanbakhsh, S., Lotfi, J., Alimoghaddom, K., Talebian, F., Hooshmand, F., Ghavamzadeh, A., and Nikbin, B. (2007). Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J. Immunol. 4: 50–57.Search in Google Scholar

Morata-Tarifa, C., Azkona, G., Glass, J., Mazzini, L., and Sanchez-Pernaute, R. (2021). Looking backward to move forward: a meta-analysis of stem cell therapy in amyotrophic lateral sclerosis. NPJ Regen. Med. 6: 20. https://doi.org/10.1038/s41536-021-00131-5.Search in Google Scholar PubMed PubMed Central

Motedayyen, H., Rezaei, A., Zarnani, A.H., and Tajik, N. (2018). Human amniotic epithelial cells inhibit activation and pro-inflammatory cytokines production of naive CD4+ T cells from women with unexplained recurrent spontaneous abortion. Reprod. Biol. 18: 182–188. https://doi.org/10.1016/j.repbio.2018.04.002.Search in Google Scholar PubMed

Muraro, P.A., Martin, R., Mancardi, G.L., Nicholas, R., Sormani, M.P., and Saccardi, R. (2017). Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat. Rev. Neurol. 13: 391–405. https://doi.org/10.1038/nrneurol.2017.81.Search in Google Scholar PubMed

Murphy, A.C., Lalor, S.J., Lynch, M.A., and Mills, K.H. (2010). Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav. Immun. 24: 641–651. https://doi.org/10.1016/j.bbi.2010.01.014.Search in Google Scholar PubMed

Naci, H., Fleurence, R., Birt, J., and Duhig, A. (2010). Economic burden of multiple sclerosis: a systematic review of the literature. Pharmacoeconomics 28: 363–379. https://doi.org/10.2165/11532230-000000000-00000.Search in Google Scholar PubMed

Najar, M., Fayyad-Kazan, M., Meuleman, N., Bron, D., Fayyad-Kazan, H., and Lagneaux, L. (2018). Mesenchymal stromal cells of the bone marrow and natural killer cells: cell interactions and cross modulation. J. Cell Commun. Signal 12: 673–688. https://doi.org/10.1007/s12079-018-0448-4.Search in Google Scholar PubMed PubMed Central

Namchaiw, P., Wen, H., Mayrhofer, F., Chechneva, O., Biswas, S., and Deng, W. (2019). Temporal and partial inhibition of GLI1 in neural stem cells (NSCs) results in the early maturation of NSC derived oligodendrocytes in vitro. Stem Cell Res. Ther. 10: 272. https://doi.org/10.1186/s13287-019-1374-y.Search in Google Scholar PubMed PubMed Central

Nguyen, H., Zarriello, S., Coats, A., Nelson, C., Kingsbury, C., Gorsky, A., Rajani, M., Neal, E.G., and Borlongan, C.V. (2019). Stem cell therapy for neurological disorders: a focus on aging. Neurobiol. Dis. 126: 85–104. https://doi.org/10.1016/j.nbd.2018.09.011.Search in Google Scholar PubMed PubMed Central

Nicaise, A.M., Wagstaff, L.J., Willis, C.M., Paisie, C., Chandok, H., Robson, P., Fossati, V., Williams, A., and Crocker, S.J. (2019). Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 116: 9030–9039. https://doi.org/10.1073/pnas.1818348116.Search in Google Scholar PubMed PubMed Central

Nicoletti, F., Patti, F., Cocuzza, C., Zaccone, P., Nicoletti, A., Di Marco, R., and Reggio, A. (1996). Elevated serum levels of interleukin-12 in chronic progressive multiple sclerosis. J. Neuroimmunol. 70: 87–90. https://doi.org/10.1016/s0165-5728(96)00101-4.Search in Google Scholar PubMed

Nutma, E., van Gent, D., Amor, S., and Peferoen, L.A.N. (2020). Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells 9: 600. https://doi.org/10.3390/cells9030600.Search in Google Scholar PubMed PubMed Central

Orihuela, R., McPherson, C.A., and Harry, G.J. (2016). Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 173: 649–665. https://doi.org/10.1111/bph.13139.Search in Google Scholar PubMed PubMed Central

Paintlia, M.K., Paintlia, A.S., Singh, A.K., and Singh, I. (2011). Synergistic activity of interleukin-17 and tumor necrosis factor-α enhances oxidative stress-mediated oligodendrocyte apoptosis. J. Neurochem. 116: 508–521. https://doi.org/10.1111/j.1471-4159.2010.07136.x.Search in Google Scholar PubMed PubMed Central

Patel, S.A., Sherman, L., Munoz, J., and Rameshwar, P. (2008). Immunological properties of mesenchymal stem cells and clinical implications. Arch. Immunol. Ther. Exp. 56: 1–8. https://doi.org/10.1007/s00005-008-0001-x.Search in Google Scholar PubMed

Peng, Z., Gao, W., Yue, B., Jiang, J., Gu, Y., Dai, J., Chen, L., and Shi, Q. (2018). Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization. J. Tissue Eng. Regen. Med. 12: e1725–e1736. https://doi.org/10.1002/term.2358.Search in Google Scholar PubMed

Petrou, P., Kassis, I., Ginzberg, A., Halimi, M., Yaghmour, N., Abramsky, O., and Karussis, D. (2021). Long-term clinical and immunological effects of repeated mesenchymal stem cell injections in patients with progressive forms of multiple sclerosis. Front. Neurol. 12: 639315. https://doi.org/10.3389/fneur.2021.639315.Search in Google Scholar PubMed PubMed Central

Pike, J., Jones, E., Rajagopalan, K., Piercy, J., and Anderson, P. (2012). Social and economic burden of walking and mobility problems in multiple sclerosis. BMC Neurol. 12: 94. https://doi.org/10.1186/1471-2377-12-94.Search in Google Scholar PubMed PubMed Central

Pirttilä, T. and Nurmikko, T. (1995). CSF oligoclonal bands, MRI, and the diagnosis of multiple sclerosis. Acta Neurol. Scand. 92: 468–471.10.1111/j.1600-0404.1995.tb00482.xSearch in Google Scholar PubMed

Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147. https://doi.org/10.1126/science.284.5411.143.Search in Google Scholar PubMed

Plaisted, W.C., Zavala, A., Hingco, E., Tran, H., Coleman, R., Lane, T.E., Loring, J.F., and Walsh, C.M. (2016). Remyelination is correlated with regulatory T cell induction following human embryoid body-derived neural precursor cell transplantation in a viral model of multiple sclerosis. PLoS One 11: e0157620. https://doi.org/10.1371/journal.pone.0157620.Search in Google Scholar PubMed PubMed Central

Ponath, G., Park, C., and Pitt, D. (2018). The role of astrocytes in multiple sclerosis. Front. Immunol. 9: 217. https://doi.org/10.3389/fimmu.2018.00217.Search in Google Scholar PubMed PubMed Central

Prajeeth, C.K., Kronisch, J., Khorooshi, R., Knier, B., Toft-Hansen, H., Gudi, V., Floess, S., Huehn, J., Owens, T., Korn, T., et al.. (2017). Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. J. Neuroinflammation 14: 204. https://doi.org/10.1186/s12974-017-0978-3.Search in Google Scholar PubMed PubMed Central

Prajeeth, C.K., Löhr, K., Floess, S., Zimmermann, J., Ulrich, R., Gudi, V., Beineke, A., Baumgärtner, W., Müller, M., Huehn, J., et al.. (2014). Effector molecules released by Th1 but not Th17 cells drive an M1 response in microglia. Brain Behav. Immun. 37: 248–259. https://doi.org/10.1016/j.bbi.2014.01.001.Search in Google Scholar PubMed

Pringproa, K., Sathanawongs, A., Khamphilai, C., Sukkarinprom, S., and Oranratnachai, A. (2016). Intravenous transplantation of mouse embryonic stem cells attenuates demyelination in an ICR outbred mouse model of demyelinating diseases. Neural Regen. Res. 11: 1603–1609. https://doi.org/10.4103/1673-5374.193239.Search in Google Scholar PubMed PubMed Central

Qin, J., Ma, X., Qi, H., Song, B., Wang, Y., Wen, X., Wang, Q.M., Sun, S., Li, Y., Zhang, R., et al.. (2015). Transplantation of induced pluripotent stem cells alleviates cerebral inflammation and neural damage in hemorrhagic stroke. PLoS One 10: e0129881. https://doi.org/10.1371/journal.pone.0129881.Search in Google Scholar PubMed PubMed Central

Quirici, N., Soligo, D., Bossolasco, P., Servida, F., Lumini, C., and Deliliers, G.L. (2002). Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 30: 783–791. https://doi.org/10.1016/s0301-472x(02)00812-3.Search in Google Scholar PubMed

Ragerdi Kashani, I., Hedayatpour, A., Pasbakhsh, P., Kafami, L., Atlasi, N., Pirhajati Mahabadi, V., Mamoudi, R., and Baazm, M. (2012). 17β-Estradiol enhances the efficacy of adipose-derived mesenchymal stem cells on remyelination in mouse model of multiple sclerosis. Acta Med. Iran. 50: 789–797.Search in Google Scholar

Ravanidis, S., Bogie, J.F., Donders, R., Craeye, D., Mays, R.W., Deans, R., Gijbels, K., Bronckaers, A., Stinissen, P., Pinxteren, J., et al.. (2015). Neuroinflammatory signals enhance the immunomodulatory and neuroprotective properties of multipotent adult progenitor cells. Stem Cell Res. Ther. 6: 176. https://doi.org/10.1186/s13287-015-0169-z.Search in Google Scholar PubMed PubMed Central

Razmkhah, M., Jaberipour, M., Erfani, N., Habibagahi, M., Talei, A.R., and Ghaderi, A. (2011). Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-β1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response? Cell. Immunol. 266: 116–122. https://doi.org/10.1016/j.cellimm.2010.09.005.Search in Google Scholar PubMed

Reboldi, A., Coisne, C., Baumjohann, D., Benvenuto, F., Bottinelli, D., Lira, S., Uccelli, A., Lanzavecchia, A., Engelhardt, B., and Sallusto, F. (2009). C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10: 514–523. https://doi.org/10.1038/ni.1716.Search in Google Scholar PubMed

Reekmans, K., Praet, J., Daans, J., Reumers, V., Pauwels, P., Van der Linden, A., Berneman, Z.N., and Ponsaerts, P. (2012). Current challenges for the advancement of neural stem cell biology and transplantation research. Stem Cell Rev. Rep. 8: 262–278. https://doi.org/10.1007/s12015-011-9266-2.Search in Google Scholar PubMed

Romme Christensen, J., Börnsen, L., Ratzer, R., Piehl, F., Khademi, M., Olsson, T., Sørensen, P.S., and Sellebjerg, F. (2013). Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS One 8: e57820. https://doi.org/10.1371/journal.pone.0057820.Search in Google Scholar PubMed PubMed Central

Rong, L.J., Chi, Y., Yang, S.G., Chen, D.D., Chen, F., Xu, S.X., Zhang, D.L., Ma, F.X., Lu, S.H., and Han, Z.C. (2012). [Effects of interferon-γ on biological characteristics and immunomodulatory property of human umbilical cord-derived mesenchymal stem cells]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 20: 421–426.Search in Google Scholar

Rong, Y., Liu, W., Wang, J., Fan, J., Luo, Y., Li, L., Kong, F., Chen, J., Tang, P., and Cai, W. (2019). Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell Death Dis. 10: 340. https://doi.org/10.1038/s41419-019-1571-8.Search in Google Scholar PubMed PubMed Central

Rossi, B., Santos-Lima, B., Terrabuio, E., Zenaro, E., and Constantin, G. (2021). Common peripheral immunity mechanisms in multiple sclerosis and Alzheimer’s disease. Front. Immunol. 12: 639369. https://doi.org/10.3389/fimmu.2021.639369.Search in Google Scholar PubMed PubMed Central

Saporta, M.A., Grskovic, M., and Dimos, J.T. (2011). Induced pluripotent stem cells in the study of neurological diseases. Stem Cell Res. Ther. 2: 37. https://doi.org/10.1186/scrt78.Search in Google Scholar PubMed PubMed Central

Schwab, K.E., Hutchinson, P., and Gargett, C.E. (2008). Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum. Reprod. 23: 934–943. https://doi.org/10.1093/humrep/den051.Search in Google Scholar PubMed

Schwarz, A., Schumacher, M., Pfaff, D., Schumacher, K., Jarius, S., Balint, B., Wiendl, H., Haas, J., and Wildemann, B. (2013). Fine-tuning of regulatory T cell function: the role of calcium signals and naive regulatory T cells for regulatory T cell deficiency in multiple sclerosis. J. Immunol. 190: 4965–4970. https://doi.org/10.4049/jimmunol.1203224.Search in Google Scholar PubMed

Segal, B.M. (2019). The diversity of encephalitogenic CD4+ T cells in multiple sclerosis and its animal models. J. Clin. Med. 8. https://doi.org/10.3390/jcm8010120.Search in Google Scholar PubMed PubMed Central

Seki, T. and Fukuda, K. (2015). Methods of induced pluripotent stem cells for clinical application. World J. Stem Cell. 7: 116–125. https://doi.org/10.4252/wjsc.v7.i1.116.Search in Google Scholar PubMed PubMed Central

Selmani, Z., Naji, A., Gaiffe, E., Obert, L., Tiberghien, P., Rouas-Freiss, N., Carosella, E.D., and Deschaseaux, F. (2009). HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation 87: S62–S66. https://doi.org/10.1097/tp.0b013e3181a2a4b3.Search in Google Scholar PubMed

Setiadi, A.F., Abbas, A.R., Jeet, S., Wong, K., Bischof, A., Peng, I., Lee, J., Bremer, M., Eggers, E.L., DeVoss, J., et al.. (2019). IL-17A is associated with the breakdown of the blood-brain barrier in relapsing-remitting multiple sclerosis. J. Neuroimmunol. 332: 147–154. https://doi.org/10.1016/j.jneuroim.2019.04.011.Search in Google Scholar PubMed

Shiri, E., Pasbakhsh, P., Borhani-Haghighi, M., Alizadeh, Z., Nekoonam, S., Mojaverrostami, S., Pirhajati Mahabadi, V., Mehdi, A., Zibara, K., and Kashani, I.R. (2021). Mesenchymal stem cells ameliorate cuprizone-induced demyelination by targeting oxidative stress and mitochondrial dysfunction. Cell. Mol. Neurobiol. 41: 1467–1481. https://doi.org/10.1007/s10571-020-00910-6.Search in Google Scholar PubMed

Shroff, G. (2016). Transplantation of human embryonic stem cells in patients with multiple sclerosis and lyme disease. Am. J. Case Rep. 17: 944–949. https://doi.org/10.12659/ajcr.899745.Search in Google Scholar PubMed PubMed Central

Shroff, G. (2018). A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells. Stem Cells Cloning 11: 1–11. https://doi.org/10.2147/sccaa.s135415.Search in Google Scholar

Shu, J., He, X., Li, H., Liu, X., Qiu, X., Zhou, T., Wang, P., and Huang, X. (2018). The beneficial effect of human amnion mesenchymal cells in inhibition of inflammation and induction of neuronal repair in EAE mice. J. Immunol. Res. 2018: 5083797. https://doi.org/10.1155/2018/5083797.Search in Google Scholar PubMed PubMed Central

Sofroniew, M.V. and Vinters, H.V. (2010). Astrocytes: biology and pathology. Acta Neuropathol. 119: 7–35. https://doi.org/10.1007/s00401-009-0619-8.Search in Google Scholar PubMed PubMed Central

Song, C.G., Zhang, Y.Z., Wu, H.N., Cao, X.L., Guo, C.J., Li, Y.Q., Zheng, M.H., and Han, H. (2018). Stem cells: a promising candidate to treat neurological disorders. Neural Regen. Res. 13: 1294–1304. https://doi.org/10.4103/1673-5374.235085.Search in Google Scholar PubMed PubMed Central

Sotiropoulou, P.A., Perez, S.A., and Papamichail, M. (2007). Clinical grade expansion of human bone marrow mesenchymal stem cells. Methods Mol. Biol. 407: 245–263. https://doi.org/10.1007/978-1-59745-536-7_17.Search in Google Scholar PubMed

Spellicy, S.E. and Hess, D.C. (2021). The immunomodulatory capacity of induced pluripotent stem cells in the post-stroke environment. Front. Cell Dev. Biol. 9: 647415. https://doi.org/10.3389/fcell.2021.647415.Search in Google Scholar PubMed PubMed Central

Squillaro, T., Peluso, G., and Galderisi, U. (2016). Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 25: 829–848. https://doi.org/10.3727/096368915x689622.Search in Google Scholar

Stephens, L.A., Malpass, K.H., and Anderton, S.M. (2009). Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg. Eur. J. Immunol. 39: 1108–1117. https://doi.org/10.1002/eji.200839073.Search in Google Scholar PubMed

Stepien, A., Dabrowska, N.L., Maciagowska, M., Macoch, R.P., Zolocinska, A., Mazur, S., Siennicka, K., Frankowska, E., Kidzinski, R., Chalimoniuk, M., et al.. (2016). Clinical application of autologous adipose stem cells in patients with multiple sclerosis: preliminary results. Mediat. Inflamm. 2016: 5302120. https://doi.org/10.1155/2016/5302120.Search in Google Scholar PubMed PubMed Central

Sun, G., Li, G., Li, D., Huang, W., Zhang, R., Zhang, H., Duan, Y., and Wang, B. (2018). hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater. Sci. Eng. C Mater. Biol Appl. 89: 194–204. https://doi.org/10.1016/j.msec.2018.04.006.Search in Google Scholar PubMed

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872. https://doi.org/10.1016/j.cell.2007.11.019.Search in Google Scholar PubMed

Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676. https://doi.org/10.1016/j.cell.2006.07.024.Search in Google Scholar PubMed

Tatarishvili, J., Oki, K., Monni, E., Koch, P., Memanishvili, T., Buga, A.M., Verma, V., Popa-Wagner, A., Brüstle, O., Lindvall, O., et al.. (2014). Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restor. Neurol. Neurosci. 32: 547–558. https://doi.org/10.3233/rnn-140404.Search in Google Scholar

Thiruvalluvan, A., Czepiel, M., Kap, Y.A., Mantingh-Otter, I., Vainchtein, I., Kuipers, J., Bijlard, M., Baron, W., Giepmans, B., Brück, W., et al.. (2016). Survival and functionality of human induced pluripotent stem cell-derived oligodendrocytes in a nonhuman primate model for multiple sclerosis. Stem Cells Transl. Med. 5: 1550–1561. https://doi.org/10.5966/sctm.2016-0024.Search in Google Scholar PubMed PubMed Central

Trajkovic, V., Vuckovic, O., Stosic-Grujicic, S., Miljkovic, D., Popadic, D., Markovic, M., Bumbasirevic, V., Backovic, A., Cvetkovic, I., Harhaji, L., et al.. (2004). Astrocyte-induced regulatory T cells mitigate CNS autoimmunity. Glia 47: 168–179. https://doi.org/10.1002/glia.20046.Search in Google Scholar PubMed

Uccelli, A., Laroni, A., Ali, R., Battaglia, M.A., Blinkenberg, M., Brundin, L., Clanet, M., Fernandez, O., Marriot, J., Muraro, P., et al.. (2021). Safety, tolerability, and activity of mesenchymal stem cells versus placebo in multiple sclerosis (MESEMS): a phase 2, randomised, double-blind crossover trial. Lancet Neurol. 20: 917–929. https://doi.org/10.1016/s1474-4422(21)00301-x.Search in Google Scholar

Uccelli, A., Laroni, A., and Freedman, M.S. (2011). Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol. 10: 649–656. https://doi.org/10.1016/s1474-4422(11)70121-1.Search in Google Scholar PubMed

Uchida, S., Suzuki, Y., Araie, M., Kashiwagi, K., Otori, Y., and Sakuragawa, N. (2003). Factors secreted by human amniotic epithelial cells promote the survival of rat retinal ganglion cells. Neurosci. Lett. 341: 1–4. https://doi.org/10.1016/s0304-3940(02)01454-4.Search in Google Scholar PubMed

Uyama, H., Mandai, M., and Takahashi, M. (2021). Stem-cell-based therapies for retinal degenerative diseases: current challenges in the establishment of new treatment strategies. Dev. Growth Differ. 63: 59–71. https://doi.org/10.1111/dgd.12704.Search in Google Scholar PubMed PubMed Central

Viglietta, V., Baecher-Allan, C., Weiner, H.L., and Hafler, D.A. (2004). Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199: 971–979. https://doi.org/10.1084/jem.20031579.Search in Google Scholar PubMed PubMed Central

Walton, C., King, R., Rechtman, L., Kaye, W., Leray, E., Marrie, R.A., Robertson, N., La Rocca, N., Uitdehaag, B., van der Mei, I., et al.. (2020). Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26: 1816–1821.https://doi.org/10.1177/1352458520970841.Search in Google Scholar PubMed PubMed Central

Wang, C., Zhang, C.J., Martin, B.N., Bulek, K., Kang, Z., Zhao, J., Bian, G., Carman, J.A., Gao, J., Dongre, A., et al.. (2017a). IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nat. Commun. 8: 15508. https://doi.org/10.1038/ncomms15508.Search in Google Scholar PubMed PubMed Central

Wang, D., Huang, S., Yuan, X., Liang, J., Xu, R., Yao, G., Feng, X., and Sun, L. (2017b). The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell. Mol. Immunol. 14: 423–431. https://doi.org/10.1038/cmi.2015.89.Search in Google Scholar PubMed PubMed Central

Wang, H.H., Dai, Y.Q., Qiu, W., Lu, Z.Q., Peng, F.H., Wang, Y.G., Bao, J., Li, Y., and Hu, X.Q. (2011). Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J. Clin. Neurosci. 18: 1313–1317. https://doi.org/10.1016/j.jocn.2011.01.031.Search in Google Scholar PubMed

Wang, Y., Huang, J., Gong, L., Yu, D., An, C., Bunpetch, V., Dai, J., Huang, H., Zou, X., Ouyang, H., et al.. (2019). The plasticity of mesenchymal stem cells in regulating surface HLA-I. iScience 15: 66–78. https://doi.org/10.1016/j.isci.2019.04.011.Search in Google Scholar PubMed PubMed Central

Weiner, H.L. (2008). A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J. Neurol. 255: 3–11. https://doi.org/10.1007/s00415-008-1002-8.Search in Google Scholar PubMed

Willis, C.M., Nicaise, A.M., Peruzzotti-Jametti, L., and Pluchino, S. (2020). The neural stem cell secretome and its role in brain repair. Brain Res. 1729: 146615. https://doi.org/10.1016/j.brainres.2019.146615.Search in Google Scholar PubMed

Xiao, J., Yang, R., Biswas, S., Zhu, Y., Qin, X., Zhang, M., Zhai, L., Luo, Y., He, X., Mao, C., et al.. (2018). Neural stem cell-based regenerative approaches for the treatment of multiple sclerosis. Mol. Neurobiol. 55: 3152–3171. https://doi.org/10.1007/s12035-017-0566-7.Search in Google Scholar PubMed PubMed Central

Xie, C., Li, X., Zhou, X., Li, Z., Zhang, Y., Zhao, L., Hao, Y., Zhang, G.X., and Guan, Y. (2018). TGFβ1 transduction enhances immunomodulatory capacity of neural stem cells in experimental autoimmune encephalomyelitis. Brain Behav. Immun. 69: 283–295. https://doi.org/10.1016/j.bbi.2017.11.023.Search in Google Scholar PubMed

Xie, C., Liu, Y.Q., Guan, Y.T., and Zhang, G.X. (2016). Induced stem cells as a novel multiple sclerosis therapy. Curr. Stem Cell Res. Ther. 11: 313–320. https://doi.org/10.2174/1574888x10666150302110013.Search in Google Scholar PubMed PubMed Central

Xie, L., Choudhury, G.R., Winters, A., Yang, S.H., and Jin, K. (2015). Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur. J. Immunol. 45: 180–191. https://doi.org/10.1002/eji.201444823.Search in Google Scholar PubMed PubMed Central

Xin, H., Chopp, M., Shen, L.H., Zhang, R.L., Zhang, L., Zhang, Z.G., and Li, Y. (2013). Multipotent mesenchymal stromal cells decrease transforming growth factor β1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke. Neurosci. Lett. 542: 81–86. https://doi.org/10.1016/j.neulet.2013.02.046.Search in Google Scholar PubMed PubMed Central

Xu, C., Diao, Y.F., Wang, J., Liang, J., Xu, H.H., Zhao, M.L., Zheng, B., Luan, Z., Wang, J.J., Yang, X.P., et al.. (2020). Intravenously infusing the secretome of adipose-derived mesenchymal stem cells ameliorates neuroinflammation and neurological functioning after traumatic brain injury. Stem Cell. Dev. 29: 222–234. https://doi.org/10.1089/scd.2019.0173.Search in Google Scholar PubMed

Yamout, B., Hourani, R., Salti, H., Barada, W., El-Hajj, T., Al-Kutoubi, A., Herlopian, A., Baz, E.K., Mahfouz, R., Khalil-Hamdan, R., et al.. (2010). Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J. Neuroimmunol. 227: 185–189. https://doi.org/10.1016/j.jneuroim.2010.07.013.Search in Google Scholar PubMed

Yang, H., Sun, J., Wang, F., Li, Y., Bi, J., and Qu, T. (2016). Umbilical cord-derived mesenchymal stem cells reversed the suppressive deficiency of T regulatory cells from peripheral blood of patients with multiple sclerosis in a co-culture – a preliminary study. Oncotarget 7: 72537–72545. https://doi.org/10.18632/oncotarget.12345.Search in Google Scholar PubMed PubMed Central

Yang, H., Yang, H., Xie, Z., Wei, L., and Bi, J. (2013). Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice. PLoS One 8: e69129. https://doi.org/10.1371/journal.pone.0069129.Search in Google Scholar PubMed PubMed Central

Yang, I., Han, S.J., Kaur, G., Crane, C., and Parsa, A.T. (2010). The role of microglia in central nervous system immunity and glioma immunology. J. Clin. Neurosci. 17: 6–10. https://doi.org/10.1016/j.jocn.2009.05.006.Search in Google Scholar PubMed PubMed Central

Yoo, S.W., Chang, D.Y., Lee, H.S., Kim, G.H., Park, J.S., Ryu, B.Y., Joe, E.H., Lee, Y.D., Kim, S.S., and Suh-Kim, H. (2013). Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β. Neurobiol. Dis. 58: 249–257. https://doi.org/10.1016/j.nbd.2013.06.001.Search in Google Scholar PubMed

Yousefi, F., Lavi Arab, F., Saeidi, K., Amiri, H., and Mahmoudi, M. (2019). Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: focus on mesenchymal stem cells and neuroprotection. J. Neuroimmunol. 328: 20–34. https://doi.org/10.1016/j.jneuroim.2018.11.015.Search in Google Scholar PubMed

Zamvil, S., Nelson, P., Trotter, J., Mitchell, D., Knobler, R., Fritz, R., and Steinman, L. (1985). T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317: 355–358. https://doi.org/10.1038/317355a0Search in Google Scholar PubMed

Zhang, C., Cao, J., Li, X., Xu, H., Wang, W., Wang, L., Zhao, X., Li, W., Jiao, J., Hu, B., et al.. (2016a). Treatment of multiple sclerosis by transplantation of neural stem cells derived from induced pluripotent stem cells. Sci. China Life Sci. 59: 950–957. https://doi.org/10.1007/s11427-016-0114-9.Search in Google Scholar PubMed

Zhang, Q., Wu, H.H., Wang, Y., Gu, G.J., Zhang, W., and Xia, R. (2016b). Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J. Neurochem. 136: 815–825. https://doi.org/10.1111/jnc.13413.Search in Google Scholar PubMed

Zhang, Z.G., Buller, B., and Chopp, M. (2019). Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury. Nat. Rev. Neurol. 15: 193–203. https://doi.org/10.1038/s41582-018-0126-4.Search in Google Scholar PubMed

Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7: 211–228. https://doi.org/10.1089/107632701300062859.Search in Google Scholar PubMed

Received: 2022-08-10
Accepted: 2022-11-18
Published Online: 2022-12-12
Published in Print: 2023-08-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2022-0102/html
Scroll to top button