Skip to main content
Log in

On the Optimal Swinging of a Swing by a Person Standing on It

  • MATHEMATICAL MODELING
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

A simple pendulum is considered as a swing model. The distance between the suspension point of the swing and the center of mass of the person standing on it acts as a limited control action, and the swing with a person on it is a system with one degree of freedom. In the form of feedback, an optimal control is constructed, under which the most rapid increase in the oscillation amplitude occurs. If the coefficient of viscous friction at the suspension point of the swing is large enough, then under this control the swing asymptotically enters the steady-state oscillation mode with a constant amplitude. If the coefficient of friction is rather small, then the oscillations of the swing turn into rotation around the suspension point. A more realistic swing model is also considered with two degrees of freedom. In this model, the control is a force that moves the center of mass of a person along the swing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. Magnus, Eine Einfuhrung in die theoretische Behandlung von Schwingungsproblemen (J. Teubner, Stuttgart, 1976).

  2. F. L. Chernous’ko, L. D. Akulenko, and B. N. Sokolov, Control of Oscillations (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  3. S. L. Chechurin, Parametric Oscillations and Stability of Periodic Motion (LGU, Leningrad, 1983) [in Russian].

    MATH  Google Scholar 

  4. L. D. Akulenko, Asymptotic Methods of Optimal Control (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  5. S. M. Curry, “How children swing,” Am. J. Phys. 44, 924–926 (1976).

    Article  Google Scholar 

  6. W. B. Case, “The pumping of a swing from the standing position,” Am. J. Phys. 64, 215–220 (1996).

    Article  Google Scholar 

  7. A. P. Seiranyan, “The swing: Parametric resonance,” J. Appl. Math. Mech. 68, 757–764 (2004).

    Article  MathSciNet  Google Scholar 

  8. A. A. Zevin and L. A. Filonenko, “A qualitative investigation of the oscillations of a pendulum with a periodically varying length and a mathematical model of a swing,” J. Appl. Math. Mech. 71, 892–904 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Wirkus, R. Rand, and A. Ruina, “How to pump a swing,” College Math. J. 29, 266–275 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  10. E. K. Lavrovskii and A. M. Formal’skii, “Optimal control of swing and swing braking,” Prikl. Mat. Mekh. 57, 92–101 (1993).

    Google Scholar 

  11. A. M. Formal’skii, Motion Control of Unstable Objects (Nauka, Moscow, 2012) [in Russian].

    Google Scholar 

  12. A. M. Formalskii, Stabilisation and Motion Control of Unstable Objects (Walter de Gruyter, Berlin, 2015).

    Book  MATH  Google Scholar 

  13. W. B. Case and M. F. Swanson, “The pumping of a swing from the seated position,” Am. J. Phys. 58, 463–467 (1990).

    Article  Google Scholar 

  14. L. A. Klimina and A. M. Formalskii, “Three-link mechanism as a model of a person on a swing,” J. Comput. Syst. Sci. Int. 59, 728 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu. F. Golubev, “Method for optimal control of mechanical systems oscillations,” KIAM Preprint No. 33 (Keldysh Inst. Appl. Math., Moscow, 2021), pp. 1–37.

    Google Scholar 

  16. Yu. F. Golubev, “Optimal control for nonlinear oscillations of natural mechanical systems,” Lobachevskii J. Math. 42, 2596–2607 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  17. Y.F. Golubev, “Optimization of Oscillations of Mechanical Systems,” Dokl. Math. 105, 45–49 (2022).

  18. V. V. Aleksandrov and V. N. Zhermolenko, “On the absolute stability of second-order systems,” Vestn. Mosk. Univ., Mat., Mekh., No. 5, 102–108 (1972).

  19. J. A. C. Wismans, F. Veldpaus, J. Janssen, A. Huson, and P. Struben, “A three-dimensional mathematical model of the knee-joint,” J. Biomech. 13, 677–685 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. A. Klimina or A. M. Formalskii.

Ethics declarations

The authors declare that they have no conflicts interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimina, L.A., Formalskii, A.M. On the Optimal Swinging of a Swing by a Person Standing on It. J. Comput. Syst. Sci. Int. 61, 944–953 (2022). https://doi.org/10.1134/S1064230722060119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230722060119

Navigation