Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 12, 2022

A novel crystallographic location of rattling atoms in filled Eu x Co4Sb12 skutterudites prepared under high-pressure conditions

  • João Elias F. S. Rodrigues ORCID logo , Javier Gainza ORCID logo , Federico Serrano-Sánchez ORCID logo , Norbert M. Nemes ORCID logo , Oscar J. Dura ORCID logo , Jose Luis Martínez ORCID logo and Jose Antonio Alonso ORCID logo EMAIL logo

Abstract

Thermoelectric M x Co4Sb12 skutterudites are well-known to exhibit a reduced thermal conductivity thanks to the rattling effect of the M-filler at the large cages occurring in the framework, centered at the 2a sites of the I m 3 space group. A novel Eu-filled skutterudite has been synthesized under high-pressure conditions at 3.5 GPa in a piston-cylinder hydrostatic press. The structural refinement from high-angular resolution synchrotron X-ray diffraction (SXRD) patterns unveils an unusual position for Eu filler atoms. By difference Fourier synthesis they are found at 12d sites, conforming statistically occupied octahedra within the mentioned cages around 2a positions. The Debye temperature was estimated by averaging the isotropic displacements by the atomic masses, leading to θ D of 273(2) K. Oftedal plots concerning the y and z Sb fractional positions, the unit-cell parameter a and M filling fraction include the novel Eu specimen in the trend observed for other filled materials prepared under high-pressure, including rare-earths, alkali or alkali-earth elements, all accepted as rattlers in filled skutterudites. A total thermal conductivity (κ) of 0.82 W m−1 K−1 is measured at 773 K for Eu0.02(1)Co4Sb12, below that of other filled skutterudites, which is promoted by the enhanced phonon scattering of Eu located at 12d sites. FE-SEM images showed large, homogeneous grains, well compacted after the high-pressure synthesis.


Corresponding author: Jose Antonio Alonso, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, E-28049, Madrid, Spain, E-mail:

Acknowledgements

All the authors thank the Spanish Ministry for Science and Innovation (MCIN/AEI/10.13039/501100011033) for funding the project numbers: PID2021-122477OB-I00 and TED2021-129254B-C22. J.G. thanks MICINN for granting the contract PRE2018-083398. The authors wish to express their gratitude to ALBA technical staff for making the facilities available for the synchrotron X-ray diffraction experiment number 2017072260.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: There are no conflicts to declare.

References

1. Li, J.-F., Liu, W.-S., Zhao, L.-D., Zhou, M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2010, 2, 152–158; https://doi.org/10.1038/asiamat.2010.138.Search in Google Scholar

2. Snyder, G. J., Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114; https://doi.org/10.1038/nmat2090.Search in Google Scholar PubMed

3. Nolas, G. S., Morelli, D. T., Tritt, T. M. Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 1999, 29, 89–116.10.1146/annurev.matsci.29.1.89Search in Google Scholar

4. Zhu, T., Liu, Y., Fu, C., Heremans, J. P., Snyder, J. G., Zhao, X. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884; https://doi.org/10.1002/adma.201605884.Search in Google Scholar PubMed

5. Slack, G. A. CRC handbook of hermoelectrics. In CRC Handbook of Thermoelectricshermoelectrics; Rowe, D. M., Ed.; CRC Press: Boca Raton, FL, 1995; pp. 407–440.Search in Google Scholar

6. Qiu, P. F., Yang, J., Liu, R. H., Shi, X., Huang, X. Y., Snyder, G. J., Zhang, W., Chen, L. D. High-temperature Electrical and Thermal Transport Properties of Fully Filled Skutterudites RFe4Sb12 (R5Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J. Appl. Phys. 2012, 12, 063713; https://doi.org/10.1063/1.3553842.Search in Google Scholar

7. Shi, X., Bai, S., Xi, L., Yang, J., Zhang, W., Chen, L., Yang, J. Realization of high thermoelectric performance in n-type partially filled skutterudites. J. Mater. Res. 2011, 26, 1745–1754.10.1557/jmr.2011.84Search in Google Scholar

8. Nolas, G. S., Slack, G. A., Morelli, D. T., Tritt, T. M., Ehrlich, A. C. The effect of rare-earth filling on the lattice thermal conductivity of skutterudites. J. Appl. Phys. 1996, 79, 4002; https://doi.org/10.1063/1.361828.Search in Google Scholar

9. Patschke, R., Zhang, X., Singh, D., Schindler, J., Kannewurf, C. R., Lowhorn, N., Tritt, T., Nolas, G. S., Kanatzidis, G. M. Thermoelectric properties and electronic structure of the cage compounds A2BaCu8Te10 (A = K, Rb, Cs): systems with low thermal conductivity. Chem. Mater. 2001, 13, 613–621; https://doi.org/10.1021/cm000390o.Search in Google Scholar

10. Koza, M. M., Johnson, M. R., Viennois, R., Mutka, H., Girard, L., Ravot, D. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat. Mater. 2008, 7, 805–810; https://doi.org/10.1038/nmat2260.Search in Google Scholar PubMed

11. Snyder, G. J., Christensen, M., Nishibori, E., Caillat, T., Iversen, B. B. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 2004, 3, 458–463; https://doi.org/10.1038/nmat1154.Search in Google Scholar PubMed

12. Prado-Gonjal, J., Serrano-Sánchez, F., Nemes, N. M., Dura, O. J., Martínez, J. L., Fernández-Díaz, M. T., Fauth, F., Alonso, J. A. Extra-low thermal conductivity in unfilled CoSb3−δ skutterudite synthesized under high-pressure conditions. Appl. Phys. Lett. 2017, 111, 083902; https://doi.org/10.1063/1.4993283.Search in Google Scholar

13. Serrano-Sánchez, F., Prado-Gonjal, J., Nemes, N. M., Biskup, N., Varela, M., Dura, O.  J., Martínez, J. L., Fernández-Díaz, M. T., Fauth, F., Alonso, J. A. Low thermal conductivity in La-filled cobalt antimonide skutterudites with an inhomogeneous filling factor prepared under high-pressure conditions. J. Mater. Chem. A 2018, 6, 118–126; https://doi.org/10.1039/C7TA08545A.Search in Google Scholar

14. Serrano-Sánchez, F., Prado-Gonjal, J., Nemes, N. M., Biskup, N., Dura, O. J., Martínez, J. L., Fernández-Díaz, M. T., Fauth, F., Alonso, J. A. Thermal conductivity reduction by fluctuation of the filling fraction in filled cobalt antimonide skutterudite thermoelectrics. ACS Appl. Energy Mater 2018, 1, 6181–6189; https://doi.org/10.1021/acsaem.8b01227.Search in Google Scholar

15. Gainza, J., Serrano-Sánchez, F., Prado-Gonjal, J., Biskup, N., Dura, O.  J., Martínez, J. L., Fauth, F., Alonso, J. A. Substantial thermal conductivity reduction in mischmetal skutterudites Mm: XCo4Sb12 prepared under high-pressure conditions, due to uneven distribution of the rare-earth elements. J. Mater. Chem. C 2019, 7, 4124–4131; https://doi.org/10.1039/c8tc06461j.Search in Google Scholar

16. Gainza, J., Serrano-Sánchez, F., Rodrigues, J. E., Prado-Gonjal, J., Nemes, N. M., Biskup, N., Dura, O.  J., Martínez, J. L., Fauth, F., Alonso, J. A. Unveiling the correlation between the crystalline structure of M-filled CoSb3 (M = Y, K, Sr) skutterudites and their thermoelectric transport properties. Adv. Funct. Mater. 2020, 30, 2001651; https://doi.org/10.1002/adfm.202001651.Search in Google Scholar

17. Rodrigues, J. E. F. S., Gainza, J., Serrano-Sánchez, F., Ferrer, M. M., Fabris, G. S. L., Sambrano, J. R., Nemes, N. M., Martínez, J. L., Popescu, C., Alonso, J. A. Unveiling the structural behavior under pressure of filled M0.5Co4Sb12 (M = K, Sr, La, Ce, and Yb) thermoelectric skutterudites. Inorg. Chem. 2021, 60, 7413–7421; https://doi.org/10.1021/acs.inorgchem.1c00682.Search in Google Scholar

18. Gainza, J., Serrano-Sánchez, F., Nemes, N. M., Dura, O. J., Martínez, J. L., Fauth, F., Alonso, J. A. Strongly reduced lattice thermal conductivity in Sn-doped rare-earth (M) filled skutterudites MxCo4Sb12−ySny, promoted by Sb–Sn disordering and phase segregation. RSC Adv. 2021, 11, 26421–26431; https://doi.org/10.1039/D1RA04270J.Search in Google Scholar

19. Tang, Y., Gibbs, Z. M., Agapito, L. A., Li, G., Kim, H-S, Nardelli, M. B., Curtarolo, S., Snyder, G. J. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 2015, 14, 1223–1228; https://doi.org/10.1038/NMAT4430.Search in Google Scholar

20. Jeitschko, W., Foecker, A. J., Paschke, D., Dewalsky, M. V., Evers, Ch. B. H., Künnen, B., Lang, A., Kotzyba, G., Rodewald, U. Ch., Möller, M. H. Crystal structure and properties of some filled and unfilled skutterudites: GdFe4P12, SmFe4P12, NdFe4As12, Eu0.54Co4Sb12, Fe0.5Ni0.5P3, CoP3, and NiP3. Z. Anorg. Allg. Chem. 2000, 626, 1112–1120. https://doi.org/10.1002/(SICI)1521-3749(200005)626:5<1112::AID-ZAAC1112>3.0.CO;2-E.10.1002/(SICI)1521-3749(200005)626:5<1112::AID-ZAAC1112>3.0.CO;2-ESearch in Google Scholar

21. Fauth, F., Boer, R., Gil-Ortiz, F., Popescu, C., Vallcorba, O., Peral, I., Fullà, D., Benach, J., Juanhuix, J. The crystallography stations at the Alba synchrotron. Eur. Phys. J. Plus 2015, 130, 160; https://doi.org/10.1140/epjp/i2015-15160-y.Search in Google Scholar

22. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55–69; https://doi.org/10.1016/0921-4526(93)90108-I.Search in Google Scholar

23. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71; https://doi.org/10.1107/S0021889869006558.Search in Google Scholar

24. Rodrigues, J. E. F. S., Escanhoela, C. A.Jr., Fragoso, B., Sombrio, G., Ferrer, F.  F., Álvarez-Galván, C., Fernández-Díaz, M. T., Souza, J. A., Ferreira, F. F., Pecharromán, C., Alonso, J. A. Experimental and theoretical investigations on the structural, electronic, and vibrational properties of Cs2AgSbCl6 double perovskite. Ind. Eng. Chem. Res. 2021, 60, 18918–18928.10.1021/acs.iecr.1c02188Search in Google Scholar

25. Rodrigues, J. E. F. S., Gainza, J., Serrano-Sanchez, F., Marini, C., Huttel, Y., Nemes, N. M., Martínez, J. L., Alonso, J. A. Atomic structure and lattice dynamics of CoSb3 skutterudite-based thermoelectrics. Chem. Mater. 2022, 34, 1213–1224.10.1021/acs.chemmater.1c03747Search in Google Scholar

26. Oftedal, I. XXXIII. Die Kristallstruktur von Skutterudit und Speiskobalt-Chloanthit. Z. Kristallogr. 1928, 66, 517–546; https://doi.org/10.1524/zkri.1928.66.1.517.Search in Google Scholar

27. Chakoumakos, B. C., Sales, B. C. Skutterudites: their structural response to filling. J. Alloys Compd. 2006, 407, 87–93; https://doi.org/10.1016/j.jallcom.2005.06.073.Search in Google Scholar

28. Hanus, R., Guo, X., Tang, Y., Li, G., Snyder, G. J., Zeier, W. G. A chemical understanding of the band convergence in thermoelectric CoSb3 skutterudites: influence of electron population, local thermal expansion, and bonding interactions. Chem. Mater. 2017, 29, 1156–1164; https://doi.org/10.1021/acs.chemmater.6b04506.Search in Google Scholar

29. Yelgel, Ö. C., Ballikaya, S. Theoretical and experimental evaluation of thermoelectric performance of alkaline earth filled skutterudite compounds. J. Solid State Chem. 2020, 284, 121201.10.1016/j.jssc.2020.121201Search in Google Scholar

30. Tang, Y., Hanus, R., Chen, S., Snyder, G. J. Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites. Nat. Commun. 2015, 6, 7584; https://doi.org/10.1038/ncomms8584.Search in Google Scholar PubMed PubMed Central

31. Mi, J., Christensen, M., Nishibori, E., Iversen, B. B. Multitemperature crystal structures and physical properties of the partially filled thermoelectric skutterudites M0.1Co4Sb12 (M = La, Ce, Nd, Sm, Yb, and Eu). Phys. Rev. B 2011, 84, 064114; https://doi.org/10.1103/PhysRevB.84.064114.Search in Google Scholar

32. Tang, Y., Chen, S. W., Snyder, G. J. Temperature dependent solubility of Yb in Yb–CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics. J. Mater. 2015, 1, 75–84; https://doi.org/10.1016/j.jmat.2015.03.008.Search in Google Scholar

33. Lamberton, G. A., Bhattacharya, S., Littleton, R. T., Kaeser, M. A., Tedstrom, R. H., Tritt, T. M., Yang, J., Nolas, G. S. High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 2002, 80, 598–600; https://doi.org/10.1063/1.1433911.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0051).


Received: 2022-08-30
Accepted: 2022-11-14
Published Online: 2022-12-12
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0051/html
Scroll to top button