Skip to main content
Log in

Properties of Thermochemical Remanent Magnetization on Basalt Samples Containing Titanomagnetites with Increased Thermal Stability

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The experiments have been carried out on the acquisition of thermochemical remanent magnetization (TCRM) in recent Kamchatka basalt containing grains of primarily magmatogene titanomagnetite (TM) with increased thermal stability by rapid heating of the initial samples in air to maximum temperatures of 500, 570 and 600°C followed by cooling at a rate of 1°C/h in the magnetic field of 50 μT. Thermal stability of single-phase oxidized TM fraction manifested itself in the appearance of a wide range of blocking temperatures from 270 to 540–570°C concentrated within two or three intervals of differently inclined linear segments on the Arai–Nagata diagrams. The integrated analysis of the results of this and our previous studies of TCRM acquisition in TMs has shown that when TCRM is created through the growth of the Curie temperature of the cells of TM oxy-exsolution structure as their composition approaches that of magnetite provided that their volume has been stabilized, TCRM proves to be close to the thermoremanent magnetization. This gives grounds to consider the paleointensity determinations obtained on these samples reliable. In other cases, the paleointensity determinations overestimate (for the low temperature segment (from 200 to 375–450°C) of the Arai-Nagata diagram) or underestimate the intensity of the magnetizing field. It is also concluded that the presence of a wide range of blocking temperatures may indicate thermochemical origin of remanent magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Alypova, O.M., Thermomagnetic studies of young volcanics of Kamchatka and some regularities of changes in magnetic characteristics depending on the composition of rocks and conditions of their formation, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1969.

  2. Belokon, V.I., Soppa, I.V., and Semkin, S.V., Formation of chemical remanent magnetization during the growth of spontaneous magnetization of reaction products, in Khimicheskaya namagnichennost': teoriya i eksperiment (Chemical Magnetization: Theory and Experiment), Vladivostok: DVGU, 1991, pp. 3–13.

  3. Bol’shakov, A.S. and Shcherbakova, V.V., Thermomagnetic criterion for determining the domain structure of ferrimagnetics, Izv. Acad. Sci. USSR, Phys. Solid Earth, 1979, vol. 15, pp. 111–117.

    Google Scholar 

  4. Bowles, J.A., Tatsumi-Petrochilos, L., Hammer, J.E., and Brachfeld, S.A., Multicomponent cubic oxide exsolution in synthetic basalts: Temperature dependence and implications for magnetic properties, J. Geophys. Res., 2012, vol. 117, no. B3, Paper ID B03202. https://doi.org/10.1029/2011JB008867

  5. Coe, R.S., Gromme, C.S., and Mankinen, E.A., Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 1978, vol. 83, no. B4, pp. 1740–1756. https://doi.org/10.1029/JB083iB04p01740

    Article  Google Scholar 

  6. Day, R., Fuller, M., and Schmidt, V.A., Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 1977, vol. 13, no. 4, pp. 260–267. https://doi.org//10.1016/0031-9201(77)90108-X

    Article  Google Scholar 

  7. Draeger, U., Prévot, M., Poidras, T., and Riisager, J., Single-domain chemical, thermochemical and thermal remanences in a basaltic rock, Geophys. J. Int., 2006, vol. 166, no. 1, pp. 12–32. https://doi.org/10.1111/j.1365-246X.2006.02862.x

    Article  Google Scholar 

  8. Dunlop, D. and Özdemir, Ö., Rock Magnetism: Fundamentals and Frontiers, Cambridge: Cambridge Univ. Press, 1997. https://doi.org/10.1017/CBO9780511612794

  9. Fabian, K. and Shcherbakov, V.P., The magnetization of the ocean floor: stress and fracturing of titanomagnetite particles by low-temperature oxidation, Geophys. J. Int., 2020, vol. 221, no. 3, pp. 2104–2112. https://doi.org/10.1093/gji/ggaa142

    Article  Google Scholar 

  10. Gapeev, A.K. and Gribov, S.K., Kinetics of single-phase oxidation of titanomagnetite, Phys. Earth Planet. Inter., 1990, vol. 63, nos. 1–2, pp. 58–65. https://doi.org/10.1016/0031-9201(90)90059-7

    Article  Google Scholar 

  11. Gapeev, A.K. and Gribov, S.K., Estimation of the magnetite grain single-phase oxidation rate under surface conditions, Izv., Phys. Solid Earth, 1997, vol. 33, no. 8, pp. 666–671.

    Google Scholar 

  12. Glevasskaya, A.M., Magnitnye mineraly i magnetizm vulkanitov (Magnetic Minerals and Magnetism of Volcanites), Kiev: Naukova Dumka, 1983.

  13. Gribov, S.K., Assessment of the effect of single-phase oxidation and subsequent exsolution of natural titanomagnetite on the results of paleointensity determination by the Thellier method (according to laboratory simulation), Mater. mezhdunar. shk.-semin. “Paleomagnetizm i magnetizm gornykh porod: teoriya, praktika, eksperiment” (Proc. Int. Workshop “Paleomagnetism and Rock Magnetism: Theory, Practice, Experiment”), Petergof, 2016, Yaroslavl: Filigran, 2016, pp. 40–47.

  14. Gribov S.K., The effect of chemical magnetization on the paleointensity determined by the Thellier method: experimental study on titanomagnetite-containing basalt, Geofiz. Issled., 2017, vol. 18, no. 1, pp. 37–48. https://doi.org/10.21455/gr2017.1–3

    Google Scholar 

  15. Gribov, S.K., Dolotov, A.V., and Shcherbakov, V.P., Experimental modeling of the chemical remanent magnetization and Thellier procedure on titanomagnetite-bearing basalts, Izv., Phys. Solid Earth, 2017a, vol. 53, no. 2, pp. 274–292. https://doi.org/10.7868/S0002333717010069

    Article  Google Scholar 

  16. Gribov, S.K., Shcherbakov, V.P., and Aphinogenova, N.A., Magnetic properties of artificial CRM created on titanomagnetite-bearing oceanic basalts. Recent advances in rock magnetism, environmental magnetism and paleomagnetism, Proc. Int. Conf. on Geomagnetism, Paleomagnetism and Rock Magnetism, Kazan, 2017b, Kazan: Kazan Univ. Press, 2018, pp. 173–194. https://doi.org/10.1007/978-3-319-90437-5

  17. Gribov, S.K., Shcherbakov, V.P., and Afinogenova, N.A., Laboratory modeling of the method for paleointensity determination by the Thellier–Coe procedure on TCRM-bearing rocks, Mater. 12-oi mezhdunar. shk.-konf. “Problemy geokosmosa” (Proc. 12th Int. Sch.-Conf. “Problems of Geocosmos”), Petergof, 2018, St. Petersburg: VVM, 2018, pp. 64–70.

  18. Gribov, S.K., Shcherbakov, V.P., Tsel’movich, V.A., and Afinogenova, N.A., The properties of thermochemical remanent magnetization acquired by slow laboratory cooling of titanomagnetite-bearing basalt samples from different temperatures and the results of the Thellier method, Izv., Phys. Solid Earth, 2021, vol. 57, no. 6, pp. 913–926. https://doi.org/10.31857/S0002333721060016

    Article  Google Scholar 

  19. Kosterov, A.A. and Prévot, M., Possible mechanisms causing failure of Thellier palaeointensity experiments in some basalts, Geophys. J. Int., 1998, vol. 134, pp. 554–572. https://doi.org/10.1046/j.1365-246x.1998.00581.x

    Article  Google Scholar 

  20. Levi, S., The effect of magnetite particle size on paleointensity determinations of the geomagnetic field, Phys. Earth Planet. Inter., 1977, vol. 13, no. 4, pp. 245–259. https://doi.org/10.1016/0031-9201(77)90107-8

    Article  Google Scholar 

  21. Nagata, T., Arai, Y., and Momose, K., Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 1963, vol. 68, no. 18, pp. 5277–5281. https://doi.org/10.1029/j.2156-2202.1963.tb00005.x

    Article  Google Scholar 

  22. Neel, L., Some theoretical aspects of rock-magnetism, Adv. Phys., 1955, vol. 4, no. 14, pp. 191–243. https://doi.org/10.1080/00018735500101204

    Article  Google Scholar 

  23. Petersen, N. and Vali, H., Observation of shrinkage cracks in ocean floor titanomagnetites, Phys. Earth Planet. Inter., 1987, vol. 46, no. 1–3, pp. 197–205. https://doi.org/10.1016/0031-9201(87)90182-8

    Article  Google Scholar 

  24. Prévot, M., Mankinen, E., Grommé, S., and Lecaille, A., High paleointensities of the geomagnetic field from thermomagnetic studies on rift valley pillow basalts from the Mid-Atlantic Ridge, J. Geophys. Res., 1983, vol. 88, no. B3, pp. 2316–2326. https://doi.org/10.1029/JB088iB03p02316

    Article  Google Scholar 

  25. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst., 1969, vol. 2, no. 2, pp. 65–71. https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  26. Selkin, P.A. and Tauxe, L., Long-term variations in palaeointensity, Philos. Trans. R. Soc. London, A, 2000, vol. 358, no. 1768, pp. 1065–1088. https://doi.org/10.1098/rsta.2000.0574

  27. Shcherbakov, V.P. and Scherbakova, V.V., On the suitability of the Thellier method of palaeointensity determinations on pseudo-single-domain and multidomain grains, Geophys. J. Int., 2001, vol. 146, no. 1, pp. 20–30. https://doi.org/10.1046/j.0956-540x.2001.01421.x

    Article  Google Scholar 

  28. Shcherbakov, V.P., Sycheva, N.K., and Gribov, S.K., Experimental and numerical simulation of the acquisition of chemical remanent magnetization and the Thellier procedure, Izv., Phys. Solid Earth, 2017, vol. 53, no. 5, pp. 645–657, https://doi.org/10.7868/S0002333717040081

    Article  Google Scholar 

  29. Shcherbakov, V.P., Gribov, S.K., Lhuillier, F., Aphinogenova, N.A., and Tsel’movich, V.A., On the reliability of absolute palaeointensity determinations on basaltic rocks bearing a thermochemical remanences, J. Geophys. Res., 2019, vol. 124, no. 8, pp. 7616–7632. https://doi.org/10.1029/2019JB017873

    Article  Google Scholar 

  30. Shcherbakov, V.P., Gribov, S.K., Aphinogenova, N.A., and Tselmovich, V.A., Single phase oxidation of ferrimagnetic grains as a cause of L-shaped Arai–Nagata diagrams, Izv., Phys. Solid Earth, 2020, vol. 56, no. 5, pp. 665–674. https://doi.org/10.31857/S0002333720050105

    Article  Google Scholar 

  31. Shcherbakov, V.P., Lhuillier, F., and Sycheva, N.K., Exact analytical solution for kinetic equations describing thermochemical remanences acquisition for single-domain grains: implications for absolute paleointensity determinations, J. Geophys. Res., 2021, vol. 126, no. 5, Paper ID e2020JB021536. https://doi.org/10.1029/2020JB021536

  32. Shcherbakova, V.V., Shcherbakov, V.P., and Heider, F., Properties of partial thermoremanent magnetization in pseudosingle domain and multidomain magnetite grains, J. Geophys. Res., 2000, vol. 105, no. B1, pp. 767–782. https://doi.org/10.1029/1999JB900235

    Article  Google Scholar 

  33. Skovorodkin, Yu.P., Study of the mechanism of remanent magnetization acquisition in lava flows, Extended Abstract of Cand. Sci. (Phys. - Math.) Dissertation, Moscow: Moscow State Univ., 1966.

  34. Stacey, F.D. and Banerjee, S.K., The Physical Principles of Rock Magnetism, Amsterdam: Elsevier, 1974.

    Google Scholar 

  35. Thellier, E. and Thellier, O., Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 1959, vol. 15, no. 3, pp. 285–376.

    Google Scholar 

Download references

Funding

The work was carried out in partial fulfillment of the state contract with Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences and supported by the Russian Foundation for Basic Research under project no. 20-05-00215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Gribov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribov, S.K., Shcherbakov, V.P., Tselmovich, V.A. et al. Properties of Thermochemical Remanent Magnetization on Basalt Samples Containing Titanomagnetites with Increased Thermal Stability. Izv., Phys. Solid Earth 58, 842–858 (2022). https://doi.org/10.1134/S1069351322060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351322060039

Keywords:

Navigation