Skip to main content
Log in

Identification of crustal deformation in the Saurashtra region, western India: insights from PSI and GNSS derived investigation

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

The Persistent Scatterer Interferometry (PSI) and Global Navigation Satellite System (GNSS) techniques were used to identify the deformation rates in the Saurashtra region, western India. A sizable number of mild to severe earthquakes (with up to M5.1) have been observed in this part of the Indian plate. In order to calculate the crustal deformation, 241 Sentinel 1A images of path 107 with frame numbers 518 and 523, acquired between 2017 and 2020, were used. Similarly, processing of the GNSS dataset was done for four sites between 2009 and 2020. The foremost geodetic results from Saurashtra indicate the existence of a significant amount of deformation. PSI results show movements towards the satellite line of sight (LOS) of up to 5.0 ± 2.0 mm/year at several places and GNSS results indicate horizontal movements of less than 1.0 ± 0.4 mm/year and vertical movements of up to 2.3 ± 0.5 mm/year in the Saurashtra region. The projected LOS displacement of the GNSS is closely comparable with the PSI derived displacement. The results highlight isolated deformation pockets in various parts of the study area. Further, two loci with significant linear displacement were observed in south and east Saurashtra. Considering the seismic activity of the region, the inferred deformation rates may pose increased seismic risk for the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The Sentinel dataset used is available at (https://sentinel.esa.int/http://scihub.copernicus.eu), and GNSS dataset used is available with the corresponding author.

References

  • Ai B, Liu K, Li X, Li DH (2008) Flat-earth phase removal algorithm improved with frequency information of interferogram. In: Liu L, Li X, Liu K, Zhang X (eds). Guangzhou, China, p 71471A

  • Alsdorf DE, Melack JM, Dunne T et al (2000) Interferometric radar measurements of water level changes on the Amazon flood plain. Nature 404:174–177. https://doi.org/10.1038/35004560

    Article  Google Scholar 

  • Atzori S, Hunstad I, Chini M et al (2009) Finite fault inversion of DInSARcoseismic displacement of the 2009 L’Aquila earthquake (central Italy): The 2009 L’AQUILA earthquake by dinsar. Geophys Res Lett. https://doi.org/10.1029/2009GL039293

    Article  Google Scholar 

  • B’ejar-Pizarro M, Carrizo D, Socquet A et al (2010) Asperities and Barriers on the Seismogenic Zone in North Chile State-of-the-Art after the 2007 M w 7.7 Tocopilla Earthquake Inferred by GPS and InSAR Data. Geophys J Int 183(1):390

    Article  Google Scholar 

  • Bacques G, de Michele M, Foumelis M et al (2020) Sentinel optical and SAR data highlights multi-segment faulting during the 2018 Palu-Sulawesi earthquake (Mw 7.5). Sci Rep 10:9103. https://doi.org/10.1038/s41598-020-66032-7

    Article  Google Scholar 

  • Bayer B, Simoni A, Schmidt D, Bertello L (2017) Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Eng Geol 226:20–32. https://doi.org/10.1016/j.enggeo.2017.03.026

    Article  Google Scholar 

  • Bekaert DPS, Hooper A, Wright TJ (2015a) A spatially variable power law tropospheric correction technique for InSAR data. J Geophys Res Solid Earth 120:1345–1356. https://doi.org/10.1002/2014JB011558

    Article  Google Scholar 

  • Bekaert DPS, Walters RJ, Wright TJ et al (2015b) Statistical comparison of InSAR tropospheric correction techniques. Remote Sens Environ 170:40–47. https://doi.org/10.1016/j.rse.2015.08.035

    Article  Google Scholar 

  • Bell MA, Elliott JR, Parsons BE (2011) Interseismic strain accumulation across the Manyi fault (Tibet) prior to the 1997 Mw 76 earthquake: Manyi Fault Strain accumulation. Geophys Res Lett. https://doi.org/10.1029/2011GL049762

    Article  Google Scholar 

  • Bhattacharya SN, Karanth RV, Dattatrayam RS, Sohoni PS (2004) Earthquake sequence in and around Bhavnagar, Saurashtra, western India during August–December 2000 and associated tectonic features. Curr Sci 86:1165–1170

    Google Scholar 

  • Biggs J, Wright TJ (2020) How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat Commun 11:3863. https://doi.org/10.1038/s41467-020-17587-6

    Article  Google Scholar 

  • Biswas K, Chakravarty D, Mitra P, Misra A (2017) Spatial-correlation based persistent scatterer interferometric study for ground deformation. J Indian Soc Remote Sens 45:913–926. https://doi.org/10.1007/s12524-016-0647-5

    Article  Google Scholar 

  • Biswas S (2005) A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Curr Sci 88:1592–1600

    Google Scholar 

  • Biswas SK (1987) Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics 135:307–327. https://doi.org/10.1016/0040-1951(87)90115-6

    Article  Google Scholar 

  • Boncori JPM, Papoutsis I, Pezzo G, et al (2015) The february 2014 cephalonia earthquake (Greece): 3D deformation field and source modeling from multiple SAR techniques. Seismol Res Lett 86:124–137. https://doi.org/10.1785/0220140126

    Article  Google Scholar 

  • Bureau of Indian Standards (BIS) (2002) Criteria for earthquake resistant design of structures, part I—general provisions and buildings. Bureau of Indian Standards 2002; IS 1893 [part I]

  • Bürgmann R, Hilley G, Ferretti A, Novali F (2006) Resolving vertical tectonics in the San Francisco Bay Area from permanent scattererInSAR and GPS analysis. Geol 34:221. https://doi.org/10.1130/G22064.1

    Article  Google Scholar 

  • Bürgmann R, Rosen PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28:169–209. https://doi.org/10.1146/annurev.earth.28.1.169

    Article  Google Scholar 

  • Calais E, Han JY, DeMets C, Nocquet JM (2006) Deformation of the North American plate interior from a decade of continuous GPS measurements: Deformation of North american Plate. J Geophys Res. https://doi.org/10.1029/2005JB004253

    Article  Google Scholar 

  • Carrère, L, Lyard F, Cancet M, et al (2016). Finite Element Solution FES2014, a new tidal model - Validation results and perspectives for improvements, presentation to ESA Living Planet Conference, Prague

  • Catherine JK, Gahalaut VK, Kundu B et al (2015) Low deformation rate in the Koyna-Warna region, a reservoir triggered earthquake site in west-central stable India. J Asian Earth Sci 97:1–9. https://doi.org/10.1016/j.jseaes.2014.10.013

    Article  Google Scholar 

  • Chen CW, Zebker HA (2000) Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. J Opt Soc Am A 17:401–414. https://doi.org/10.1364/JOSAA.17.000401

    Article  Google Scholar 

  • Chopra S, Yadav RBS, Patel H et al (2008) The Gujarat (India) seismic network. Seismol Res Lett 79:806–815. https://doi.org/10.1785/gssrl.79.6.806

    Article  Google Scholar 

  • Crosetto M, Biescas E, Duro J et al (2008) Generation of Advanced ERS and envisat interferometric SAR products using the stable point network technique. Photogrammeng Remote Sens 74:443–450. https://doi.org/10.14358/PERS.74.4.443

    Article  Google Scholar 

  • Crosetto M, Monserrat O, Devanthéry N et al (2016) Persistent scatterer interferometry using sentinel-1 data. Int Arch Photogramm Remote Sens Spatial Inf Sci 7:835–839

    Article  Google Scholar 

  • Delgado Blasco J, Foumelis M, Stewart C, Hooper A (2019) Measuring urban subsidence in the rome metropolitan area (Italy) with sentinel-1 SNAP-StaMPS persistent scatterer interferometry. Remote Sens 11:129. https://doi.org/10.3390/rs11020129

    Article  Google Scholar 

  • Dumka RK, Rastogi BK (2012) Crustal strain in the rupture zone of 2001 Bhuj earthquake. Instit Seismol Res, Annual Rep 2013:45–46

    Google Scholar 

  • Dumka RK, Kotlia BS, SuriBabu D et al (2018) Present-day crustal deformation and geodetic strain in the vicinity of Dholavira - Harappan civilization site, Kachchh, western part of the Indian plate. Quatern Int 507:324–332. https://doi.org/10.1016/j.quaint.2018.10.035

    Article  Google Scholar 

  • Dumka RK, Chopra S, Prajapati S (2019a) GPS derived crustal deformation analysis of Kachchh, zone of 2001(M7.7) earthquake Western India. Quatern Int 507:295–301. https://doi.org/10.1016/j.quaint.2019.01.032

    Article  Google Scholar 

  • Dumka RK, SuriBabu D, Kotlia BS et al (2022a) Crustal deformation measurements by global positioning system (GPS) along NSL, western India. Geodesy and Geodyn 13:254–260. https://doi.org/10.1016/j.geog.2021.05.004

    Article  Google Scholar 

  • Dumka RK, SuriBabu D, Malik K et al (2020) PS-InSAR derived deformation study in the Kachchh, Western India. J Appl Comput Geosci 8:100041. https://doi.org/10.1016/j.acags.2020.100041

    Article  Google Scholar 

  • Dumka RK, Suribabu D, Narain P et al (2021a) PSInSAR and GNSS derived deformation study in the west part of Narmada Son Lineament (NSL), western India. Quatern Sci Adv 4:100035. https://doi.org/10.1016/j.qsa.2021.100035

    Article  Google Scholar 

  • Dumka RK, Suribabu D, Prajapati S (2021b) PSI and GNSS derived ground subsidence detection in the UNESCO Heritage City of Ahmedabad Western India. Geocarto Int. https://doi.org/10.1080/10106049.2021.1980618

    Article  Google Scholar 

  • Dumka RK, Prajapati S., Suribabu D, Kothyari GC, Malik K (2022b) GPS and INSAR derived evidences of intra-basin stress and strike-slip tectonics in the vicinity of 2001 (M7.7) earthquake, Kachchh, western India. Geol J, (in press).

  • Estey LH, Meertens CM (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solutions 3:42–49

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Rev Geophys. https://doi.org/10.1029/2005RG000183

    Article  Google Scholar 

  • Fattahi H, Agram P, Simons M (2017) A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis. IEEE Trans Geosci Remote Sensing 55:777–786. https://doi.org/10.1109/TGRS.2016.2614925

  • Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38:2202–2212. https://doi.org/10.1109/36.868878

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:13

    Article  Google Scholar 

  • Ferretti A, Savio G, Barzaghi R et al (2007) Submillimeter accuracy of InSAR time series: experimental validation. IEEE Trans Geosci Remote Sens 45:1142–1153. https://doi.org/10.1109/TGRS.2007.894440

    Article  Google Scholar 

  • Fiaschi S, Tessitore S, Bonì R et al (2017) From ERS-1/2 to Sentinel-1: two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy). Gisci Remote Sens 54:305–328. https://doi.org/10.1080/15481603.2016.1269404

    Article  Google Scholar 

  • Floris M, Fontana A, Tessari G, Mulè M (2019) Subsidence zonation through satellite interferometry in coastal plain environments of NE Italy: a possible tool for geological and geomorphological mapping in urban areas. Remote Sens 11:165. https://doi.org/10.3390/rs11020165

    Article  Google Scholar 

  • Foumelis M, Delgado Blasco JM, Desnos Y-L, et al (2018) Esa Snap - Stamps Integrated Processing for Sentinel-1 Persistent Scatterer Interferometry. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Valencia, pp 1364–1367

  • Ghiglia D, Pritt M (1998) Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley

    Google Scholar 

  • Grandin R, Doin M-P, Bollinger L et al (2012) Long-term growth of the Himalaya inferred from interseismicInSAR measurement. Geology 40:1059–1062. https://doi.org/10.1130/G33154.1

    Article  Google Scholar 

  • GSI (2000) Seismotectonic Atlas of India and its environs. Geol Surv India Spec. Publ. 59, Kolkata

  • Hackl M, Malservisi R, Hugentobler U, Wonnacott R (2011) Estimation of velocity uncertainties from GPS time series: Examples from the analysis of the South African TrigNet network: trignet uncertainty estimation. J Geophys Res. https://doi.org/10.1029/2010JB008142

    Article  Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Springer

    Book  Google Scholar 

  • Herring T, King R, McClusky S (2010) Introduction to gamit/globk. Massachusetts Institute of Technology

    Google Scholar 

  • Hoeser T (2018) Analysing the capabilities and limitations of InSAR using sentinel-1 data for landslide detection and monitoring

  • Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res 112:B07407. https://doi.org/10.1029/2006JB004763

  • Hooper A, Bekaert D, Spaans K, Arıkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514:1–13. https://doi.org/10.1016/j.tecto.2011.10.013

    Article  Google Scholar 

  • Hooper A, Bekaert D, Hussain E, Spaans K (2018) StaMPS/MTI manual: Version 4.1 b. School of Earth and Environment, University of Leeds

  • Jade S, Mukul M, Gaur VK et al (2014) Contemporary deformation in the Kashmir-Himachal, Garhwal and Kumaon Himalaya: significant insights from 1995–2008 GPS time series. J Geod 88:539–557. https://doi.org/10.1007/s00190-014-0702-3

    Article  Google Scholar 

  • Jade S, Shrungeshwara TS, Kumar K et al (2017) India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Sci Rep 7:11439. https://doi.org/10.1038/s41598-017-11697-w

    Article  Google Scholar 

  • Kamra C, Chopra S, Yadav RBS (2021) Joint inversion for stress and fault orientations using focal mechanisms of earthquakes in the Saurashtra horst, a part of stable continental region of India, and source parameter estimation. J Seismol 25:1141–1159. https://doi.org/10.1007/s10950-021-10016-1

    Article  Google Scholar 

  • Kandregula RS, Kothyari GC, Swamy K, Rawat S (2019) Quantitative assessment of tectonic activity in Northern Saurashtra, Western India. J Indian Geophys Union 23:542–558

    Google Scholar 

  • Kapoor R (2002) A brief history of recorded earthquakes in India: 1705–2001. Nistads News 4:

  • Khorrami M, Abrishami S, Maghsoudi Y et al (2020) Extreme subsidence in a populated city (Mashhad) detected by PSInSAR considering groundwater withdrawal and geotechnical properties. Sci Rep 10:11357. https://doi.org/10.1038/s41598-020-67989-1

    Article  Google Scholar 

  • King R, Bock Y (1998) Documentation for the GAMIT analysis software, release 9.7, Massachusetts Institute of Technology

  • Klees R, Massonnet D (1998) Deformation measurements using SAR interferometry: potential and limitations. GeologieenMijnbouw 77:161–176. https://doi.org/10.1023/A:1003594502801

    Article  Google Scholar 

  • Lagler K, Schindelegger M, Böhm J et al (2013) GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40:1069–1073. https://doi.org/10.1002/grl.50288

    Article  Google Scholar 

  • Angela L, Simon K, Esther H, Seth S (2017) Active tectonics, earthquakes and palaeoseismicity in slowly deforming continents. Geol Soc 432:1–12. https://doi.org/10.1144/SP432.13

    Article  Google Scholar 

  • Leonard LJ, Mazzotti S, Hyndman RD (2008) Deformation rates estimated from earthquakes in the northern Cordillera of Canada and eastern Alaska: Northern Cordillera seismic deformation. J Geophys Res. https://doi.org/10.1029/2007JB005456

    Article  Google Scholar 

  • Letellier T, Lyard F, Lefevre F (2004) The new global tidal solution: FES2004. In: Proceedings of the Ocean Surface Topography Science Team Meeting, St. Petersburg, FL, USA

  • Lyard FH, Allain DJ, Cancet M et al (2021) FES2014 global ocean tide atlas: design and performance. Ocean Sci 17:615–649

    Article  Google Scholar 

  • Mahesh P, Gahalaut VK, Catherine JK et al (2012) Localized crustal deformation in the Godavari failed rift, India. Earth Planet Sci Lett 333:46–51. https://doi.org/10.1016/j.epsl.2012.04.008

    Article  Google Scholar 

  • Massironi M, Zampieri D, Bianchi M et al (2009) Use of PSInSAR™ data to infer active tectonics: clues on the differential uplift across the Giudicarie belt (Central-Eastern Alps, Italy). Tectonophysics 476:297–303. https://doi.org/10.1016/j.tecto.2009.05.025

    Article  Google Scholar 

  • Mazzotti S (2007) Geodynamic models for earthquake studies in intraplate North America. In: Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America

  • McCarthy D, Petit G (2004) IERS Technical Note; 32 Frankfurt am Main.

  • Meng G, Shen X, Wu J, Rogozhin EA (2006) Present-day crustal motion in northeast China determined from GPS measurements. Earth, Planets and Space 58:1441–1445

    Article  Google Scholar 

  • Merh SS (1995) Geology of Gujarat. Geological Society of India

    Google Scholar 

  • Mishra D, Singh B, Gupta S et al (2001) Major lineaments and gravity-magnetic trends in Saurashtra, India. Curr Sci 80:1059–1067

    Google Scholar 

  • Mishra D, Singh B, Gupta S, et al (2004) Gravity studies over Saurashtra Peninsula, India-Some New Insight. In: 5th conference and exposition on petroleum geophysics, Hyderabad. pp 75–87

  • Nocquet J-M (2012) Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics 579:220–242. https://doi.org/10.1016/j.tecto.2012.03.037

    Article  Google Scholar 

  • Perissin D (2016) Interferometric SAR multitemporal processing: techniques and applications. Springer

    Google Scholar 

  • Perissin D, Wang Z, Lin H (2012) Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed persistent scatterers. ISPRS J Photogramm Remote Sens 73:58–67. https://doi.org/10.1016/j.isprsjprs.2012.07.002

    Article  Google Scholar 

  • Perrone G, Morelli M, Piana F et al (2013) Current tectonic activity and differential uplift along the Cottian Alps/Po Plain boundary (NW Italy) as derived by PS-InSAR data. J Geodyn 66:65–78. https://doi.org/10.1016/j.jog.2013.02.004

    Article  Google Scholar 

  • Peyret M, Masson F, Yavasoglu H et al (2013) Present-day strain distribution across a segment of the central bend of the North anatolian fault zone from a persistent-scatterersInSAR analysis of the ERS and Envisat archives. Geophys J Int 192:929–945. https://doi.org/10.1093/gji/ggs085

    Article  Google Scholar 

  • Prats-Iraola P, Scheiber R, Marotti L et al (2012) TOPS Interferometry WithTerraSAR-X. IEEE Trans Geosci Remote Sens 50:3179–3188. https://doi.org/10.1109/TGRS.2011.2178247

    Article  Google Scholar 

  • Psimoulis P, Ghilardi M, Fouache E, Stiros S (2007) Subsidence and evolution of the Thessaloniki Plain, Greece, based on historical leveling and GPS data. Eng Geol - ENG GEOL 90:55–70. https://doi.org/10.1016/j.enggeo.2006.12.001

    Article  Google Scholar 

  • Ramirez R, Lee S-R, Kwon T-H (2020) Long-term remote monitoring of ground deformation using sentinel-1 Interferometric Synthetic Aperture Radar (InSAR): applications and insights into geotechnical engineering practices. Appl Sci 10:7447. https://doi.org/10.3390/app10217447

    Article  Google Scholar 

  • Rastogi BK, Choudhury P, Dumka R et al (2012) Stress pulse migration by viscoelastic process for long-distance delayed triggering of shocks in Gujarat, India, after the 2001 Mw 7.7 Bhuj earthquake. In: Sharma AS, Bunde A, Dimri VP, Baker DN (eds) Geophysical monograph series. American Geophysical Union

    Google Scholar 

  • Biswas SK (1982) Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin. Bulletin 66:.doi: https://doi.org/10.1306/03B5A976-16D1-11D7-8645000102C1865D

  • Saria E, Calais E, Altamimi Z et al (2013) A new velocity field for Africa from combined GPS and DORIS space geodetic solutions: contribution to the definition of the African reference frame (AFREF). JGR Solid Earth 118:1677–1697. https://doi.org/10.1002/jgrb.50137

    Article  Google Scholar 

  • Singh AP, Mishra OP (2015) Seismological evidence for monsoon induced micro to moderate earthquake sequence beneath the 2011 Talala, Saurashtra earthquake, Gujarat, India. Tectonophysics 661:38–48

    Article  Google Scholar 

  • Singh AP, Koulakov I, Kumar MR et al (2019) Seismic velocity structure and intraplate seismicity beneath the Deccan Volcanic Province of western India. Phys Earth Planet Inter 287:21–36. https://doi.org/10.1016/j.pepi.2018.12.007

    Article  Google Scholar 

  • Singh AP, Mishra OP, Rastogi BK, Kumar S (2013) Crustal heterogeneities beneath the 2011 Talala, Saurashtra earthquake, Gujarat, India source zone: seismological evidence for neo-tectonics. J Asian Earth Sci 62:672–684. https://doi.org/10.1016/j.jseaes.2012.11.017

    Article  Google Scholar 

  • Singh AP, Shukla A, Kumar MR, Thakkar MG (2017) Characterizing surface geology, liquefaction potential, and maximum intensity in the Kachchh seismic zone, Western India, through microtremor analysis. Bull Seismol Soc Am 107:1277–1292. https://doi.org/10.1785/0120160264

    Article  Google Scholar 

  • Smith JH, Wickham JD, Stehman SV, Yang L (2002) Impacts of patch size and land-cover heterogeneity on thematic image classification accuracy. Photogramm Eng Remote Sens 68:65–70

    Google Scholar 

  • Snay R, Adams G, Chin M, et al (2002)The Synergistic CORS Program Continues to Evolve. 10

  • Solanki T, Solanki PM, Makwana N et al (2021) Geomorphic response to neotectonic instability in the Deccan volcanic province, Shetrunji River, western India: insights from quantitative geomorphology. Quatern Int 575:96–110. https://doi.org/10.1016/j.quaint.2020.06.015

    Article  Google Scholar 

  • Sousa JJ, Hooper AJ, Hanssen RF et al (2011) Persistent ScattererInSAR: a comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens Environ 115:2652–2663. https://doi.org/10.1016/j.rse.2011.05.021

    Article  Google Scholar 

  • Suribabu D, Dumka RK, Paikray J et al (2021) Geodetic characterization of active Katrol Hill Fault (KHF) of central mainland Kachchh, western India. Geodesy and Geodyn 13:247–253. https://doi.org/10.1016/j.geog.2021.05.003

    Article  Google Scholar 

  • Takada Y, Sagiya T, Nishimura T (2018) Interseismic crustal deformation in and around the Atotsugawa fault system, central Japan, detected by InSAR and GNSS. Earth Planets Space 70:32. https://doi.org/10.1186/s40623-018-0801-0

    Article  Google Scholar 

  • Tessari G, Floris M, Pasquali P (2017) Phase and amplitude analyses of SAR data for landslide detection and monitoring in non-urban areas located in the North-Eastern Italian pre-Alps. Environ Earth Sci 76:85. https://doi.org/10.1007/s12665-017-6403-5

    Article  Google Scholar 

  • Tomás R, Romero R, Mulas J et al (2014) Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain. Environ Earth Sci 71:163–181. https://doi.org/10.1007/s12665-013-2422-z

    Article  Google Scholar 

  • Tosi L, Da Lio C, Strozzi T, Teatini P (2016) Combining L- and X-Band SAR interferometry to assess ground displacements in heterogeneous coastal environments: the Po river delta and Venice Lagoon. Italy Remote Sens. https://doi.org/10.3390/rs8040308

    Article  Google Scholar 

  • Tregoning P (2003) Is the Australian Plate deforming? A space geodetic perspective. In: Evolution and Dynamics of the Australian Plate. Geological Society of America

  • Van Genderen GR, John (1996) SAR interferometry: issues, techniques, applications. Int J Remote Sens 17:1803–1836

    Article  Google Scholar 

  • Van Leijen FJ (2014) Persistent scatterer interferometry based on geodetic estimation theory.

  • Veci L, Prats-Iraola P, Scheiber R, et al (2014) The Sentinel-1 Toolbox. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 1–3

  • Vilardo G, Ventura G, Terranova C et al (2009) Ground deformation due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in the Campania Region (Southern Italy) from permanent scatterers synthetic aperture radar interferometry. Remote Sens Environ 113:197–212. https://doi.org/10.1016/j.rse.2008.09.007

    Article  Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138. https://doi.org/10.1016/j.enggeo.2014.03.003

    Article  Google Scholar 

  • Werner C, Wegmuller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477). pp 4362–4364 vol.7

  • Yadav RBS, Papadimitriou EE, Karakostas VG et al (2011) The 2007 Talala, Saurashtra, western India earthquake sequence: Tectonic implications and seismicity triggering. J Asian Earth Sci 40:303–314. https://doi.org/10.1016/j.jseaes.2010.07.001

    Article  Google Scholar 

  • Zhou L, Guo J, Hu J et al (2017) Wuhan surface subsidence analysis in 2015–2016 based on sentinel-1A data by SBAS-InSAR. Remote Sens 9:982. https://doi.org/10.3390/rs9100982

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the anonymous reviewers who greatly helped in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Dumka.

Ethics declarations

Conflict of interest

No conflict of interest is reported by authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suribabu, D., Dumka, R.K., Kothyari, G.C. et al. Identification of crustal deformation in the Saurashtra region, western India: insights from PSI and GNSS derived investigation. Acta Geod Geophys 57, 639–659 (2022). https://doi.org/10.1007/s40328-022-00399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-022-00399-z

Keywords

Navigation