Skip to main content
Log in

The lectin DrfL inhibits cell migration, adhesion and triggers autophagy-dependent cell death in glioma cells

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38MAPK and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Ostrom, Q.T., Patil, N., Cioffi, G., Waite, K., Kruchko, C., Barnholtz-Sloan, J.S.: Corrigendum to: CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro. Oncol. (2020). https://doi.org/10.1093/neuonc/noaa269

    Article  PubMed Central  PubMed  Google Scholar 

  2. Nutt, C.L., Matthews, R.T., Hockfield, S.: Glial tumor invasion: a role for the upregulation and cleavage of BEHAB/brevican. Neuroscientist. 7, 113–122 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Strik, H.M., Kolodziej, M., Oertel, W., Basecke, J.: Glycobiology in malignant gliomas: expression and functions of galectins and possible therapeutic options. Curr. Pharm. Biotechnol. 13, 2299–2307 (2012)

    Article  PubMed  Google Scholar 

  4. Wojton, J., Meisen, W.H., Kaur, B.: How to train glioma cells to die: molecular challenges in cell death. J. Neurooncol. 126, 377–384 (2016)

    Article  PubMed  Google Scholar 

  5. Parker, N.R., Hudson, A.L., Khong, P., Parkinson, J.F., Dwight, T., Ikin, R.J., Zhu, Y., Cheng, Z.J., Vafaee, F., Chen, J., Wheeler, H.R., Howell, V.M.: Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci. Rep. 6, 22477 (2016)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., Scheithauer, B.W., Kleihues, P.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007)

    Article  PubMed Central  PubMed  Google Scholar 

  7. Khasraw, M., Lassman, A.B.: Advances in the treatment of malignant gliomas. Curr. Oncol. Rep. 12, 26–33 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Cheray, M., Petit, D., Forestier, L., Karayan-Tapon, L., Maftah, A., Jauberteau, M.-O., Battu, S., Gallet, F.P., Lalloué, F.: Glycosylation-related gene expression is linked to differentiation status in glioblastomas undifferentiated cells. Cancer Lett. 312, 24–32 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Ivanov, V.N., Wu, J., Hei, T.K.: Regulation of human glioblastoma cell death by combined treatment of cannabidiol, γ-radiation and small molecule inhibitors of cell signaling pathways. Oncotarget 8, 74068–74095 (2017)

    Article  PubMed Central  PubMed  Google Scholar 

  10. Brennan, C.W., Verhaak, R.G.W., McKenna, A., Campos, B., Noushmehr, H., Salama, S.R., Zheng, S., Chakravarty, D., Sanborn, J.Z., Berman, S.H., Beroukhim, R., Bernard, B., Wu, C.-J., Genovese, G., Shmulevich, I., Barnholtz-Sloan, J., Zou, L., Vegesna, R., Shukla, S.A., Ciriello, G., Yung, W.K., Zhang, W., Sougnez, C., Mikkelsen, T., Aldape, K., Bigner, D.D., Van Meir, E.G., Prados, M., Sloan, A., Black, K.L., Eschbacher, J., Finocchiaro, G., Friedman, W., Andrews, D.W., Guha, A., Iacocca, M., O’Neill, B.P., Foltz, G., Myers, J., Weisenberger, D.J., Penny, R., Kucherlapati, R., Perou, C.M., Hayes, D.N., Gibbs, R., Marra, M., Mills, G.B., Lander, E., Spellman, P., Wilson, R., Sander, C., Weinstein, J., Meyerson, M., Gabriel, S., Laird, P.W., Haussler, D., Getz, G., Chin, L.: TCGA Research Network: The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Batash, R., Asna, N., Schaffer, P., Francis, N., Schaffer, M.: Glioblastoma Multiforme, Diagnosis and Treatment. Recent Literature Review. Curr. Med. Chem. 24, 3002–3009 (2017)

    CAS  PubMed  Google Scholar 

  12. Kane, J.R.: The Role of Brain Vasculature in Glioblastoma. Mol. Neurobiol. 56, 6645–6653 (2019)

    Article  CAS  PubMed  Google Scholar 

  13. Aroui, S., Aouey, B., Chtourou, Y., Meunier, A.-C., Fetoui, H., Kenani, A.: Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-P38-JNK signaling pathway in human glioblastoma. Chem. Biol. Interact. 244, 195–203 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. Theeler, B.J., Gilbert, M.R.: Advances in the treatment of newly diagnosed glioblastoma. BMC Med. 13, 293 (2015)

    Article  PubMed Central  PubMed  Google Scholar 

  15. Pontes, L. de B., Karnakis, T., Malheiros, S.M.F., Weltman, E., Brandt, R.A., Guendelmann, R.A.K.: Glioblastoma: approach to treat elderly patients. Einstein. 10, 512–518 (2012)

  16. Juratli, T.A., Schackert, G., Krex, D.: Current status of local therapy in malignant gliomas–a clinical review of three selected approaches. Pharmacol. Ther. 139, 341–358 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Chen, W.-L., Barszczyk, A., Turlova, E., Deurloo, M., Liu, B., Yang, B.B., Rutka, J.T., Feng, Z.-P., Sun, H.-S.: Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget 6, 16321–16340 (2015)

    Article  PubMed Central  PubMed  Google Scholar 

  18. Heynckes, S., Daka, K., Franco, P., Gaebelein, A., Frenking, J.H., Doria-Medina, R., Mader, I., Delev, D., Schnell, O., Heiland, D.H.: Crosslink between Temozolomide and PD-L1 immune-checkpoint inhibition in glioblastoma multiforme. BMC Cancer 19, 117 (2019)

    Article  PubMed Central  PubMed  Google Scholar 

  19. Chalmers, A.J., Ruff, E.M., Martindale, C., Lovegrove, N., Short, S.C.: Cytotoxic effects of temozolomide and radiation are additive- and schedule-dependent. Int. J. Radiat. Oncol. Biol. Phys. 75, 1511–1519 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Chen, J.L., David, J., Cook-Spaeth, D., Casey, S., Cohen, D., Selvendiran, K., Bekaii-Saab, T., Hays, J.L.: Autophagy Induction Results in Enhanced Anoikis Resistance in Models of Peritoneal Disease. Mol. Cancer Res. 15, 26–34 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. Ozdemir-Kaynak, E., Qutub, A.A., Yesil-Celiktas, O.: Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy. Front. Physiol. 9, 170 (2018)

    Article  PubMed Central  PubMed  Google Scholar 

  22. Burchell, B.: Genetic variation of human UDP-glucuronosyltransferase: implications in disease and drug glucuronidation. Am. J. Pharmacogenomics. 3, 37–52 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Talukdar, S., Pradhan, A.K., Bhoopathi, P., Shen, X.-N., August, L.A., Windle, J.J., Sarkar, D., Furnari, F.B., Cavenee, W.K., Das, S.K., Emdad, L., Fisher, P.B.: MDA-9/Syntenin regulates protective autophagy in anoikis-resistant glioma stem cells. Proc. Natl. Acad. Sci. U. S. A. 115, 5768–5773 (2018)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Acharya, M.M., Christie, L.-A., Lan, M.L., Giedzinski, E., Fike, J.R., Rosi, S., Limoli, C.L.: Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Res. 71, 4834–4845 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Acharya, M.M., Lan, M.L., Kan, V.H., Patel, N.H., Giedzinski, E., Tseng, B.P., Limoli, C.L.: Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radic. Biol. Med. 49, 1846–1855 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. Moskal, J.R., Kroes, R.A., Dawson, G.: The glycobiology of brain tumors: disease relevance and therapeutic potential. Expert Rev. Neurother. 9, 1529–1545 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. Chakraborty, A.K., Pawelek, J.M.: GnT-V, macrophage and cancer metastasis: a common link. Clin. Exp. Metastasis. 20, 365–373 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Drinnan, N.B., Halliday, J., Ramsdale, T.: Inhibitors of sialyltransferases: potential roles in tumor growth and metastasis. Mini Rev. Med. Chem. 3, 501–517 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Marsico, G., Russo, L., Quondamatteo, F., Pandit, A.: Glycosylation and Integrin Regulation in Cancer. Trends Cancer Res. 4, 537–552 (2018)

    Article  CAS  Google Scholar 

  30. Fianco, G., Cenci, C., Barilà, D.: Caspase-8 expression and its Src-dependent phosphorylation on Tyr380 promote cancer cell neoplastic transformation and resistance to anoikis. Exp. Cell Res. 347, 114–122 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Oh, Y.-T., Sun, S.-Y.: Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules. 11, (2021). https://doi.org/10.3390/biom11040499

  32. Marhuenda, E., Fabre, C., Zhang, C., Martin-Fernandez, M., Iskratsch, T., Saleh, A., Bauchet, L., Cambedouzou, J., Hugnot, J.-P., Duffau, H., Dennis, J.W., Cornu, D., Bakalara, N.: Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. J. Exp. Clin. Cancer Res. 40, 139 (2021)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K.J., Werb, Z.: Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Singh, S., Singh, D.K.: Effect of molluscicidal components of Abrus precatorius, Argemone mexicana and Nerium indicum on certain biochemical parameters of Lymnaea acuminata. Phytother. Res. 13, 210–213 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Van Damme, E.J.M., Lannoo, N., Fouquaert, E., Peumans, W.J.: The identification of inducible cytoplasmic/nuclear carbohydrate-binding proteins urges to develop novel concepts about the role of plant lectins. Glycoconj. J. 20, 449–460 (2004)

    Article  PubMed  Google Scholar 

  36. Liu, Z., Luo, Y., Zhou, T.-T., Zhang, W.-Z.: Could plant lectins become promising anti-tumour drugs for causing autophagic cell death? Cell Prolif. 46, 509–515 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Jiang, Q.-L., Zhang, S., Tian, M., Zhang, S.-Y., Xie, T., Chen, D.-Y., Chen, Y.-J., He, J., Liu, J., Ouyang, L., Jiang, X.: Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Prolif. 48, 17–28 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. Hernandez, J.D., Baum, L.G.: Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology 12, 127R-R136 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. Fuster, M.M., Esko, J.D.: The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer. 5, 526–542 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. Lichtenstein, R.G., Rabinovich, G.A.: Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ. 20, 976–986 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. de Oliveira Figueiroa, E., Albuquerque da Cunha, C.R., Albuquerque, P.B.S., de Paula, R.A., Aranda-Souza, M.A., Alves, M.S., Zagmignan, A., Carneiro-da-Cunha, M.G., Nascimento da Silva, L.C., Dos Santos Correia, M.T.: Lectin-Carbohydrate Interactions: Implications for the Development of New Anticancer Agents. Curr. Med. Chem. 24, 3667–3680 (2017)

  42. Prasanna, V.K., Venkatesh, Y.P.: Characterization of onion lectin (Allium cepa agglutinin) as an immunomodulatory protein inducing Th1-type immune response in vitro. Int. Immunopharmacol. 26, 304–313 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. Xiao, X., He, H., Ding, X., Yang, Q., Liu, X., Liu, S., Rang, J., Wang, T., Zuo, M., Xia, L.: Purification and cloning of lectin that induce cell apoptosis from Allium chinense. Phytomedicine 22, 238–244 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. Akla, N., Pratt, J., Annabi, B.: Concanavalin-A triggers inflammatory response through JAK/STAT3 signalling and modulates MT1-MMP regulation of COX-2 in mesenchymal stromal cells. Exp. Cell Res. 318, 2498–2506 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. Pratt, J., Annabi, B.: Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1-MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells. Cell. Signal. 26, 917–924 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. Nanni, S.B., Pratt, J., Beauchemin, D., Haidara, K., Annabi, B.: Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas. Biomark. Cancer. 8, 77–87 (2016)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mazalovska, M., Kouokam, J.C.: Plant-derived lectins as potential cancer therapeutics and diagnostic tools. Biomed Res. Int. 2020, 1631394 (2020)

    Article  PubMed Central  PubMed  Google Scholar 

  48. Bhutia, S.K., Panda, P.K., Sinha, N., Praharaj, P.P., Bhol, C.S., Panigrahi, D.P., Mahapatra, K.K., Saha, S., Patra, S., Mishra, S.R., Behera, B.P., Patil, S., Maiti, T.K.: Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol. Res. 144, 8–18 (2019)

    Article  CAS  PubMed  Google Scholar 

  49. Pinto-Junior, V.R., Correia, J.L.A., Pereira, R.I., Pereira-Junior, F.N., Santiago, M.Q., Osterne, V.J.S., Madeira, J.C., Cajazeiras, J.B., Nagano, C.S., Delatorre, P., Assreuy, A.M.S., Nascimento, K.S., Cavada, B.S.: Purification and molecular characterization of a novel mannose-specific lectin from Dioclea reflexa hook seeds with inflammatory activity. J. Mol. Recognit. 29, 134–141 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. Pinto-Junior, V.R., Osterne, V.J.S., Santiago, M.Q., Correia, J.L.A., Pereira-Junior, F.N., Leal, R.B., Pereira, M.G., Chicas, L.S., Nagano, C.S., Rocha, B.A.M., Silva-Filho, J.C., Ferreira, W.P., Rocha, C.R.C., Nascimento, K.S., Assreuy, A.M.S., Cavada, B.S.: Structural studies of a vasorelaxant lectin from Dioclea reflexa Hook seeds: Crystal structure, molecular docking and dynamics. Int. J. Biol. Macromol. 98, 12–23 (2017)

    Article  CAS  PubMed  Google Scholar 

  51. Nascimento, A.P.M., Wolin, I.A.V., Welter, P.G., Heinrich, I.A., Zanotto-Filho, A., Osterne, V.J.S., Lossio, C.F., Silva, M.T.L., Nascimento, K.S., Cavada, B.S., Leal, R.B.: Lectin from Dioclea violacea induces autophagy in U87 glioma cells. Int. J. Biol. Macromol. 134, 660–672 (2019)

    Article  CAS  PubMed  Google Scholar 

  52. Wolin, I.A.V., Heinrich, I.A., Nascimento, A.P.M., Welter, P.G., Sosa, L.D.V., De Paul, A.L., Zanotto-Filho, A., Nedel, C.B., Lima, L.D., Osterne, V.J.S., Pinto-Junior, V.R., Nascimento, K.S., Cavada, B.S., Leal, R.B.: ConBr lectin modulates MAPKs and Akt pathways and triggers autophagic glioma cell death by a mechanism dependent upon caspase-8 activation. Biochimie 180, 186–204 (2021)

    Article  CAS  PubMed  Google Scholar 

  53. Cavada, B.S., Silva, M.T.L., Osterne, V.J.S., Pinto-Junior, V.R., Nascimento, A.P.M., Wolin, I.A.V., Heinrich, I.A., Nobre, C.A.S., Moreira, C.G., Lossio, C.F., Rocha, C.R.C., Martins, J.L., Nascimento, K.S., Leal, R.B.: Canavalia bonariensis lectin: Molecular bases of glycoconjugates interaction and antiglioma potential. Int. J. Biol. Macromol. 106, 369–378 (2018)

    Article  CAS  PubMed  Google Scholar 

  54. Leal, R.B., Pinto-Junior, V.R., Osterne, V.J.S., Wolin, I.A.V., Nascimento, A.P.M., Neco, A.H.B., Araripe, D.A., Welter, P.G., Neto, C.C., Correia, J.L.A., Rocha, C.R.C., Nascimento, K.S., Cavada, B.S.: Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int. J. Biol. Macromol. 114, 64–76 (2018)

  55. Nascimento, A.P.M., Knaut, J.L., Rieger, D.K., Wolin, I.A.V., Heinrich, I.A., Mann, J., Juarez, A.V., Sosa, L.D.V., De Paul, A.L., Moreira, C.G., Silva, I.B., Nobre, C.S., Osterne, V.J.S., Nascimento, K.S., Cavada, B.S., Leal, R.B.: Anti-glioma properties of DVL, a lectin purified from Dioclea violacea. Int. J. Biol. Macromol. 120, 566–577 (2018)

    Article  CAS  PubMed  Google Scholar 

  56. Nascimento, K.S., Santiago, M.Q., Pinto-Junior, V.R., Osterne, V.J.S., Martins, F.W.V., Nascimento, A.P.M., Wolin, I.A.V., Heinrich, I.A., Martins, M.G.Q., Silva, M.T.L., Lossio, C.F., Rocha, C.R.C., Leal, R.B., Cavada, B.S.: Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein. Int. J. Biochem. Cell Biol. 92, 79–89 (2017)

    Article  CAS  PubMed  Google Scholar 

  57. Lopes, F.G., Oliveira, K.A., Lopes, R.G., Poluceno, G.G., Simioni, C., Gabriel, D.A.S.P., Bauer, C.M., Maraschin, M., Derner, R.B., Garcez, R.C., Tasca, C.I., Nedel, C.B.: Anti-cancer Effects of Fucoxanthin on Human Glioblastoma Cell Line. Anticancer Res. 40, 6799–6815 (2020)

    Article  CAS  PubMed  Google Scholar 

  58. Dal-Cim, T., Poluceno, G.G., Lanznaster, D., de Oliveira, K.A., Nedel, C.B., Tasca, C.I.: Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A1 and A2A adenosine receptors and PI3K, MEK, and PKC pathways. Purinergic Signal 15, 465–476 (2019)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Zhang, X., Li, W., Wang, C., Leng, X., Lian, S., Feng, J., Li, J., Wang, H.: Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells. Mol. Cell. Biochem. 385, 265–275 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. Lawrence, C.P., Chow, S.C.: Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties. Toxicol. Appl. Pharmacol. 265, 103–112 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63 (1983)

    Article  CAS  PubMed  Google Scholar 

  62. Liang, C.-C., Park, A.Y., Guan, J.-L.: In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007)

    Article  CAS  PubMed  Google Scholar 

  63. Singh, R., Nawale, L., Sarkar, D., Suresh, C.G.: Two chitotriose-specific lectins show anti-angiogenesis, induces caspase-9-mediated apoptosis and early arrest of pancreatic tumor cell cycle. PLoS ONE 11, e0146110 (2016)

    Article  PubMed Central  PubMed  Google Scholar 

  64. Munshi, A., Hobbs, M., Meyn, R.E.: Clonogenic cell survival assay. Methods Mol. Med. 110, (2005). https://doi.org/10.1385/1-59259-869-2:021

  65. Mao, H., Lebrun, D.G., Yang, J., Zhu, V.F., Li, M.: Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest. 30, 48–56 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  66. Cavada, B.S., Pinto-Junior, V.R., Osterne, V.J.S., Nascimento, K.S.: ConA-like lectins: High similarity proteins as models to study structure/biological activities relationships. Int. J. Mol. Sci. 20, 30 (2018)

    Article  PubMed Central  PubMed  Google Scholar 

  67. Osterne, V.J.S., Silva-Filho, J.C., Santiago, M.Q., Pinto-Junior, V.R., Almeida, A.C., Barreto, A.A.G.C., Wolin, I.A.V., Nascimento, A.P.M., Amorim, R.M.F., Rocha, B.A.M., Delatorre, P., Nagano, C.S., Leal, R.B., Assreuy, A.M.S., Nascimento, K.S., Cavada, B.S.: Structural characterization of a lectin from Canavalia virosa seeds with inflammatory and cytotoxic activities. Int. J. Biol. Macromol. 94, 271–282 (2017)

    Article  CAS  PubMed  Google Scholar 

  68. Sanai, N., Alvarez-Buylla, A., Berger, M.S.: Neural stem cells and the origin of gliomas. N. Engl. J. Med. 353, 811–822 (2005)

    Article  CAS  PubMed  Google Scholar 

  69. Hong, J.-F., Song, Y.-F., Liu, Z., Zheng, Z.-C., Chen, H.-J., Wang, S.-S.: Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration. Mol. Med. Rep. 13, 4541–4548 (2016)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Sant, S., Johnston, P.A.: The production of 3D tumor spheroids for cancer drug discovery. Drug Discov. Today Technol. 23, 27–36 (2017)

    Article  PubMed Central  PubMed  Google Scholar 

  71. Soubéran, A., Tchoghandjian, A.: Practical Review on Preclinical Human Glioblastoma Models: Advances and Challenges for Clinical Translation. Cancers. 12, (2020). https://doi.org/10.3390/cancers12092347

  72. Paoli, P., Giannoni, E., Chiarugi, P.: Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta. 1833, 3481–3498 (2013)

    Article  CAS  PubMed  Google Scholar 

  73. Nakano, K., Vousden, K.H.: PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell. 7, 683–694 (2001)

    Article  CAS  PubMed  Google Scholar 

  74. Booth, L.A., Tavallai, S., Hamed, H.A., Cruickshanks, N., Dent, P.: The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell. Signal. 26, 549–555 (2014)

    Article  CAS  PubMed  Google Scholar 

  75. Hou, W., Han, J., Lu, C., Goldstein, L.A., Rabinowich, H.: Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6, 891–900 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Lalaoui, N., Lindqvist, L.M., Sandow, J.J., Ekert, P.G.: The molecular relationships between apoptosis, autophagy and necroptosis. Semin. Cell Dev. Biol. 39, 63–69 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. Okada, H., Mak, T.W.: Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer. 4, 592–603 (2004)

    Article  CAS  PubMed  Google Scholar 

  78. Trejo-Solís, C., Serrano-Garcia, N., Escamilla-Ramírez, Á., Castillo-Rodríguez, R.A., Jimenez-Farfan, D., Palencia, G., Calvillo, M., Alvarez-Lemus, M.A., Flores-Nájera, A., Cruz-Salgado, A., Sotelo, J.: Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. Int. J. Mol. Sci. 19, (2018). https://doi.org/10.3390/ijms19123773

  79. Wu, H., Che, X., Zheng, Q., Wu, A., Pan, K., Shao, A., Wu, Q., Zhang, J., Hong, Y.: Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int. J. Biol. Sci. 10, 1072–1083 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  80. Devenport, S.N., Singhal, R., Radyk, M.D., Taranto, J.G., Kerk, S.A., Chen, B., Goyert, J.W., Jain, C., Das, N.K., Oravecz-Wilson, K., Zhang, L., Greenson, J.K., Chen, Y.E., Soleimanpour, S.A., Reddy, P., Lyssiotis, C.A., Shah, Y.M.: Colorectal cancer cells utilize autophagy to maintain mitochondrial metabolism for cell proliferation under nutrient stress. JCI Insight. 6, (2021). https://doi.org/10.1172/jci.insight.138835

  81. Djavaheri-Mergny, M., Maiuri, M.C., Kroemer, G.: Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29, 1717–1719 (2010)

    Article  CAS  PubMed  Google Scholar 

  82. Ashrafi, G., Schwarz, T.L.: The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31–42 (2013)

    Article  CAS  PubMed  Google Scholar 

  83. Youle, R.J., Narendra, D.P.: Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Chinnadurai, G., Vijayalingam, S., Gibson, S.B.: BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions. Oncogene 27(Suppl 1), S114–S127 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Panda, P.K., Naik, P.P., Meher, B.R., Das, D.N., Mukhopadhyay, S., Praharaj, P.P., Maiti, T.K., Bhutia, S.K.: PUMA dependent mitophagy by Abrus agglutinin contributes to apoptosis through ceramide generation. Biochim. Biophys. Acta Mol. Cell Res. 1865, 480–495 (2018)

    Article  CAS  PubMed  Google Scholar 

  86. Huldani, H., Rashid, A.I., Turaev, K.N., Opulencia, M.J.C., Abdelbasset, W.K., Bokov, D.O., Mustafa, Y.F., Al-Gazally, M.E., Hammid, A.T., Kadhim, M.M., Ahmadi, S.H.: Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Commun Signal. 20(1), 167 (2022)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Leal, R.B., Mann, J., Pinto-Junior, V.R., Oliveira, M.V., Osterne, V.J.S., Wolin, I.A.V., Nascimento, A.P.M., Welter, P.G., Ferreira, V.M.S., Silva, A.A., Seeger, R.L., Nascimento, K.S., Cavada, B.S.: Structural Prediction and Characterization of Canavalia grandiflora (ConGF) Lectin Complexed with MMP1: Unveiling the Antiglioma Potential of Legume Lectins. Molecules 27, 7089 (2022)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Council for Scientific and Technological Development (CNPq) Brazil (Projects #309048/2019-2; #439601/2018-5; #CNPq/RENORBIO 407945/2013-0); National Coordination for the Training and Improvement of Higher Education Personnel (CAPES) Brazil via Finance Code 001; Santa Catarina State Research Foundation (FAPESC) Project FAPESC/PRONEX Program—NENASC #1262/2012-9, and FAPESC CP 26/2020 (2021TR000310). AZF, BSC, KSN and RBL are recipients of a Research Scholarship from CNPq (CNPq Research Productivity). We are grateful to the Laboratório Multiusuário de Estudos em Biologia at the Universidade Federal de Santa Catarina (LAMEB/UFSC) for technical assistance. IAVW received a fellowship from CAPES Foundation, Ministry of Education of Brazil. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Bainy Leal.

Ethics declarations

Conflict of interests

The authors have declared that there are no conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Ethical approval

This study was performed in compliance with the Helsinki Declaration on ethical principles for handling human tissue specimens, with all Brazilian national regulations and requirements. Glioblastoma Multiforme (GBM1) cells were surgically isolated from a GBM tumor from a patient at Hospital Celso Ramos in Florianopolis, Santa Catarina, Brazil and cultured at Santa Catarina Federal University (UFSC/Brazil). All procedures, and patient consent forms were approved by the UFSC/Brazil, Human Research Ethics Committee (CEPSH protocol number 108.286). Primary astrocyte cultures were prepared from cerebral cortex male newborn Wistar rats. The animals were provided by the Animal Care Facility at the Federal University of Santa Catarina (UFSC). All procedures were approved by the Institutional Animal Care and Use Committee (CEUA/UFSC protocol number 2380161216). Rat C6 glioma cells (ATCC-CCL-107) and human U87 glioma cells (ATCC/ HTB-14) lineages were provided by the Cell Bank of Rio de Janeiro (RJ, Brazil).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolin, I.A.V., Nascimento, A.P.M., Seeger, R. et al. The lectin DrfL inhibits cell migration, adhesion and triggers autophagy-dependent cell death in glioma cells. Glycoconj J 40, 47–67 (2023). https://doi.org/10.1007/s10719-022-10095-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10095-3

Keywords

Navigation