Skip to main content
Log in

Homotopy theory of monoid actions via group actions and an Elmendorf style theorem

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

Let M be a monoid and \(G:\mathbf {Mon} \rightarrow \mathbf {Grp}\) be the group completion functor from monoids to groups. Given a collection \(\mathcal {X}\) of submonoids of M and for each \(N\in \mathcal {X}\) a collection \(\mathcal {Y}_N\) of subgroups of G(N), we construct a model structure on the category of M-spaces and M-equivariant maps, called the \((\mathcal {X},\mathcal {Y})\)-model structure, in which weak equivalences and fibrations are induced from the standard \(\mathcal {Y}_N\)-model structures on G(N)-spaces for all \(N\in \mathcal {X}\). We also show that for a pair of collections \((\mathcal {X},\mathcal {Y})\) there is a small category \({{\mathbf {O}}}_{(\mathcal {X},\mathcal {Y})}\) whose objects are M-spaces \(M\times _NG(N)/H\) for each \(N\in \mathcal {X}\) and \(H\in \mathcal {Y}_N\) and morphisms are M-equivariant maps, such that the \((\mathcal {X},\mathcal {Y})\)-model structure on the category of M-spaces is Quillen equivalent to the projective model structure on the category of contravariant \({{\mathbf {O}}}_{(\mathcal {X},\mathcal {Y})}\)-diagrams of spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elmendorf, A.D.: Systems of fixed point sets. Trans. Am. Math. Soc. 277(1), 275–284 (1983). https://doi.org/10.2307/1999356

    Article  MathSciNet  Google Scholar 

  2. Malcev, A.I.: On the immersion of associative systems in groups. Mat. Sb. 6(48), 331–336 (1939)

    Google Scholar 

  3. Erdal, M.A., Ünlü, Ö.: Semigroup actions on sets and the Burnside ring. Appl. Categ. Struct. (2016). https://doi.org/10.1007/s10485-016-9477-4

    Article  Google Scholar 

  4. Strickland, N.P.: The Category of CGWH Spaces. Preprint (2009)

  5. Hirschhorn, P.S.: The Quillen model category of topological spaces. Expo. Math. 37(1), 2–24 (2019)

    Article  MathSciNet  Google Scholar 

  6. Quillen, D.G.: Homotopical Algebra. Lecture Notes in Mathematics, No. 43, p. 156. Springer, Berlin (1967)

  7. Dwyer, W.G., Spaliński, J.: Homotopy theories and model categories. In: Handbook of Algebraic Topology, pp. 73–126. North-Holland, Amsterdam (1995). https://doi.org/10.1016/B978-044481779-2/50003-1

  8. Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63, p. 209. American Mathematical Society, Providence (1999)

    Google Scholar 

  9. Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99, p. 457. American Mathematical Society, Providence (2003)

    Google Scholar 

  10. May, J.P., Ponto, K.: More Concise Algebraic Topology: Localization, Completion, and Model Categories. University of Chicago Press, Chicago (2011)

    Book  Google Scholar 

  11. Hess, K., Kȩdziorek, M., Riehl, E., Shipley, B.: A necessary and sufficient condition for induced model structures. J. Topol. 10(2), 324–369 (2017)

    Article  MathSciNet  Google Scholar 

  12. Berger, C., Moerdijk, I.: Axiomatic homotopy theory for operads. Comment. Math. Helv. 78(4), 805–831 (2003). https://doi.org/10.1007/s00014-003-0772-y

    Article  MathSciNet  Google Scholar 

  13. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Mathematical Society Lecture Note Series, vol. 189, p. 316. Cambridge University Press, Cambridge (1994). https://doi.org/10.1017/CBO9780511600579

    Book  Google Scholar 

  14. Hill, M.A., Hopkins, M.J., Ravenel, D.C.: On the nonexistence of elements of Kervaire invariant one. Ann. Math. 184, 1–262 (2016)

    Article  MathSciNet  Google Scholar 

  15. Nikolaus, T., Scholze, P.: On topological cyclic homology. Acta Math. 221(2), 203–409 (2018)

    Article  MathSciNet  Google Scholar 

  16. Dotto, E., Moi, K., Patchkoria, I., Reeh, S.P.: Real topological Hochschild homology. J. Eur. Math. Soc. 23(1), 63–152 (2020)

    Article  MathSciNet  Google Scholar 

  17. Huerta, J., Sati, H., Schreiber, U.: Real ade-equivariant (co) homotopy and super m-branes. Commun. Math. Phys. 371(2), 425–524 (2019)

    Article  MathSciNet  Google Scholar 

  18. Sati, H., Schreiber, U.: Equivariant cohomotopy implies orientifold tadpole cancellation. J. Geom. Phys. 156, 103775 (2020)

    Article  MathSciNet  Google Scholar 

  19. Piacenza, R.J.: Homotopy theory of diagrams and CW-complexes over a category. Canad. J. Math. 43(4), 814–824 (1991). https://doi.org/10.4153/CJM-1991-046-3

    Article  MathSciNet  Google Scholar 

  20. May, J.P.: Equivariant Homotopy and Cohomology Theory. CBMS Regional Conference Series in Mathematics, vol. 91, p. 366. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1996). https://doi.org/10.1090/cbms/091. With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner

  21. Stephan, M.: On equivariant homotopy theory for model categories. Homol. Homotopy Appl. 18(2), 183–208 (2016). https://doi.org/10.4310/HHA.2016.v18.n2.a10

    Article  MathSciNet  Google Scholar 

  22. Guillou, B., May, J.P., Rubin, J.: Enriched model categories in equivariant contexts. Homol. Homotopy Appl. 12(2), 1–35 (2010)

    Google Scholar 

  23. Erdal, M.A., Güçlükan-İlhan, A.: A model structure via orbit spaces for equivariant homotopy. J. Homotopy Relat. Struct. 14(4), 1131–1141 (2019)

    Article  MathSciNet  Google Scholar 

  24. Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170, p. 925. Princeton, Princeton University Press (2009). https://doi.org/10.1515/9781400830558

    Book  Google Scholar 

  25. Fausk, H.: Equivariant homotopy theory for pro-spectra. Geom. Topol. 12(1), 103–176 (2008)

    Article  MathSciNet  Google Scholar 

  26. Mandell, M.A., May, J.P.: Equivariant orthogonal spectra and \(S\)-modules. Mem. Am. Math. Soc. 159(755), 108 (2002). https://doi.org/10.1090/memo/0755

    Article  MathSciNet  Google Scholar 

  27. Schwede, S.: Global Homotopy Theory. New Mathematical Monographs, Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  28. Riehl, E.: Categorical Homotopy Theory, vol. 24. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  29. Shulman, M.: Homotopy limits and colimits and enriched homotopy theory (2006)

  30. Moerdijk, I., Svensson, J.-A.: The equivariant Serre spectral sequence. Proc. Am. Math. Soc. 118(1), 263–278 (1993)

    Article  MathSciNet  Google Scholar 

  31. Thomason, R.W.: Cat as a closed model category. Cah. Topol. Geom. Differ. Categ. 21(3), 305–324 (1980)

    MathSciNet  Google Scholar 

  32. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, vol. 2. Oxford University Press, Oxford (2002)

    Book  Google Scholar 

  33. Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory. Springer, Basel (2009)

    Book  Google Scholar 

  34. Souza, J.A., Tozatti, H.V.: Chaos, attraction, and control for semigroup actions. In: Semigroup Forum, vol. 101, no. 1, pp. 202–225. Springer (2020)

  35. Mittenhuber, D.: Semigroup actions on homogeneous spaces: control sets and stabilizer subgroups. In: Proceedings of 1995 34th IEEE Conference on Decision and Control, vol. 4, pp. 3289–3294. IEEE (1995)

  36. Sain, M., Massey, J.: Invertibility of linear time-invariant dynamical systems. IEEE Trans. Autom. Control 14(2), 141–149 (1969)

    Article  MathSciNet  Google Scholar 

  37. Milnor, J.: On the concept of attractor. In: The Theory of Chaotic Attractors, pp. 243–264. Springer, New York (1985)

  38. Souza, J.A.: On the existence of global attractors in principal bundles. Dyn. Syst. 32(3), 410–422 (2017)

    Article  MathSciNet  Google Scholar 

  39. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In: International Symposium on Mathematical Foundations of Computer Science, pp. 419–430. Springer (2008)

  40. Hooper, P.K.: The undecidability of the Turing machine immortality problem 1. J. Symbol. Logic 31(2), 219–234 (1966)

    Article  MathSciNet  Google Scholar 

  41. Lamb, J.S., Roberts, J.A.: Time-reversal symmetry in dynamical systems: a survey. Physica D 112(1–2), 1–39 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for constructive comments and suggestions towards the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Akif Erdal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by TÜBİTAK - ARDEB. Project No: 117F085.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdal, M.A. Homotopy theory of monoid actions via group actions and an Elmendorf style theorem. Collect. Math. 75, 331–359 (2024). https://doi.org/10.1007/s13348-022-00388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-022-00388-z

Keywords

Mathematics Subject Classification

Navigation