Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 22, 2022

Organic-inorganic interface chemistry for sustainable materials

  • Jędrzej Piątek EMAIL logo , Bruno V. M. Rodrigues and Adam Slabon EMAIL logo

Abstract

This mini-review focuses on up-to-date advances of hybrid materials consisting of organic and inorganic components and their applications in different chemical processes. The purpose of forming such hybrids is mainly to functionalize and stabilize inorganic supports by attaching an organic linker to enhance their performance towards a target application. The interface chemistry is present with the emphasis on the sustainability of their components, chemical changes in substrates during synthesis, improvements of their physical and chemical properties, and, finally, their implementation. The latter is the main sectioning feature of this review, while we present the most prosperous applications ranging from catalysis, through water purification and energy storage. Emphasis was given to materials that can be classified as green to the best in our consideration. As the summary, the current situation on developing hybrid materials as well as directions towards sustainable future using organic-inorganic hybrids are presented.


Corresponding authors: Jędrzej Piątek, Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden; and Inorganic Chemistry, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany, E-mail: ; and Adam Slabon, Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden; and Chair of Inorganic Chemistry, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Anastas, P. T., Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.Search in Google Scholar

2. Contini, P., Sand, P. H. Methods to expedite environment protection: international ecostandards. Am. J. Int. Law 1972, 66, 37; https://doi.org/10.2307/2198445.Search in Google Scholar

3. Vikas, M., Dwarakish, G. S. Coastal pollution: a review. Aquat. Procedia 2015, 4, 381; https://doi.org/10.1016/j.aqpro.2015.02.051.Search in Google Scholar

4. Cheng, S. Heavy metal pollution in China: origin, pattern and control. Environ. Sci. Pollut. Res. 2003, 10, 192; https://doi.org/10.1065/espr2002.11.141.1.Search in Google Scholar PubMed

5. Awange, J. L., Kyalo Kiema, J. B. Environmental pollution. Environ. Sci. Eng. 2013, 2, 483.10.1007/978-3-642-34085-7_27Search in Google Scholar

6. Kampa, M., Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362; https://doi.org/10.1016/j.envpol.2007.06.012.Search in Google Scholar PubMed

7. Yang, P., Clark, D. S., Yaghi, O. M. Envisioning the “air economy” — powered by reticular chemistry and sunlight for clean air, clean energy, and clean water. Mol. Front. J. 2021, 05, 30; https://doi.org/10.1142/s2529732521400046.Search in Google Scholar

8. Owa, F. D. Water pollution: sources, effects, control and management. Mediterr. J. Soc. Sci. 2013, 4, 65.10.5901/mjss.2013.v4n8p65Search in Google Scholar

9. Mohajan, H. K. Acid rain is a local environment pollution but global concern human rights view project acid rain is a local environment pollution but global concern. Open Sci. J. Anal. Chem. 2018, 3, 47.Search in Google Scholar

10. Purwendah, E. K., Mangku, D. G. S., Periani, A. Dispute settlements of oil spills in the sea towards sea environment pollution. In Proceedings of the First International Conference on Progressive Civil Society (ICONPROCS 2019), 2019.10.2991/iconprocs-19.2019.51Search in Google Scholar

11. Sancini, A., Tomei, F., Tomei, G., Caciari, T., Di Giorgio, V., André, J. C., Palermo, P., Andreozzi, G., Nardone, N., Schifano, M. P., Fiaschetti, M., Cetica, C., Ciarrocca, M. Urban pollution. G. Ital. Med. Lav. Ergon. 2012, 34, 187.Search in Google Scholar

12. Tahmasbian, I., Nasrazadani, A., Shoja, H., Safari Sinegani, A. A. The effects of human activities and different land-use on trace element pollution in urban topsoil of Isfahan (Iran). Environ. Earth Sci. 2014, 71, 1551; https://doi.org/10.1007/s12665-013-2561-2.Search in Google Scholar

13. Wardas-Lasoń, M., Garbacz-Klempka, A. Historical metallurgical activities and environment pollution at the substratum level of the Main Market Square in Krakow. Geochronometria 2016, 43, 59; https://doi.org/10.1515/geochr-2015-0032.Search in Google Scholar

14. Zhang, Q., Wang, C. Natural and human factors affect the distribution of soil heavy metal pollution: a review. Water, Air, Soil Pollut. 2020, 231, 350–363; https://doi.org/10.1007/s11270-020-04728-2.Search in Google Scholar

15. Han, G. Watershed water environment and hydrology under the influence of anthropogenic and natural processes. Water 2022, 14, 1; https://doi.org/10.3390/w14071059.Search in Google Scholar

16. Anastas, P., Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 2010, 39, 301; https://doi.org/10.1039/b918763b.Search in Google Scholar PubMed

17. Mohammadi, M., Khodamorady, M., Tahmasbi, B., Bahrami, K., Ghorbani-Choghamarani, A. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: synthesis, functionalization, and applications in eco-friendly catalysis. J. Ind. Eng. Chem. 2021, 97, 1; https://doi.org/10.1016/j.jiec.2021.02.001.Search in Google Scholar

18. Piątek, J., Afyon, S., Budnyak, T. M., Budnyk, S., Sipponen, M. H., Slabon, A. Sustainable Li-ion batteries: chemistry and recycling. Adv. Energy Mater. 2020, 11, 2003456; https://doi.org/10.1002/aenm.202003456.Search in Google Scholar

19. Zhang, H., Ma, J., Wang, F., Chu, Y., Yang, L., Xia, M. Mechanism of carboxymethyl chitosan hybrid montmorillonite and adsorption of Pb(II) and Congo red by CMC-MMT organic-inorganic hybrid composite. Int. J. Biol. Macromol. 2020, 149, 1161; https://doi.org/10.1016/j.ijbiomac.2020.01.201.Search in Google Scholar PubMed

20. Ge, Q., Liu, H. Tunable amine-functionalized silsesquioxane-based hybrid networks for efficient removal of heavy metal ions and selective adsorption of anionic dyes. Chem. Eng. J. 2022, 428, 131370; https://doi.org/10.1016/j.cej.2021.131370.Search in Google Scholar

21. Qamar, S. A., Qamar, M., Basharat, A., Bilal, M., Cheng, H., Iqbal, H. M. N. Alginate-based nano-adsorbent materials – bioinspired solution to mitigate hazardous environmental pollutants. Chemosphere 2022, 288, 132618; https://doi.org/10.1016/j.chemosphere.2021.132618.Search in Google Scholar PubMed

22. Keersemaker, M. A new circular economy action plan for a cleaner and more competitive europe. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the COmmittee of the Regions. European Commission: Brussels, 2020.Search in Google Scholar

23. Regan, M. S. FY 2022-2026 EPA Strategic Plan Table of Contents; The National Service Center for Environmental Publications (NSCEP): Cincinnati, Ohio, 2022; pp. 1–99.Search in Google Scholar

24. Peter, J., Nechikkattu, R., Mohan, A., Maria Thomas, A., Ha, C. S. Stimuli-responsive organic-inorganic mesoporous silica hybrids: a comprehensive review on synthesis and recent advances. Mater. Sci. Eng., B 2021, 270, 115232; https://doi.org/10.1016/j.mseb.2021.115232.Search in Google Scholar

25. Schwenzer, J. A., Hellmann, T., Nejand, B. A., Hu, H., Abzieher, T., Schackmar, F., Hossain, I. M., Fassl, P., Mayer, T., Jaegermann, W., Lemmer, U., Paetzold, U. W. Thermal stability and cation composition of hybrid organic-inorganic perovskites. ACS Appl. Mater. Interfaces 2021, 13, 15292; https://doi.org/10.1021/acsami.1c01547.Search in Google Scholar PubMed

26. Budnyak, T. M., Modersitzki, S., Pylypchuk, I. V., Piątek, J., Jaworski, A., Sevastyanova, O., Lindström, M. E., Slabon, A. Tailored hydrophobic/hydrophilic lignin coatings on mesoporous silica for sustainable cobalt(II) recycling. ACS Sustainable Chem. Eng. 2020, 8, 16262; https://doi.org/10.1021/acssuschemeng.0c05696.Search in Google Scholar

27. Liu, X., Wu, Y., Zhao, X., Wang, Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: a review. Carbohydr. Polym. 2021, 267, 118179; https://doi.org/10.1016/j.carbpol.2021.118179.Search in Google Scholar PubMed

28. Li, J. X., Zhang, T., Chen, H. J., Du, Z. X. A (4, 4)-connected zinc(II) coordination polymer constructed with the flexible 2-carboxy phenoxyacetate ligand: synthesis, conformation alteration and fluorescent properties. Z. Kristallogr. 2021, 236, 251; https://doi.org/10.1515/zkri-2021-2043.Search in Google Scholar

29. Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shenxiao, Y., Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 2020, 3, 245; https://doi.org/10.1038/s41929-020-0428-y.Search in Google Scholar

30. Piątek, J., de Bruin-Dickason, C. N., Jaworski, A., Chen, J., Budnyak, T., Slabon, A. Glycine-functionalized silica as sorbent for cobalt(II) and nickel(II) recovery. Appl. Surf. Sci. 2020, 530, 147299; https://doi.org/10.1016/j.apsusc.2020.147299.Search in Google Scholar

31. Vallet-Regí, M., Colilla, M., González, B. Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem. Soc. Rev. 2011, 40, 596; https://doi.org/10.1039/c0cs00025f.Search in Google Scholar PubMed

32. Vijayakanth, T., Liptrot, D. J., Gazit, E., Boomishankar, R., Bowen, C. R. Recent advances in organic and organic–inorganic hybrid materials for piezoelectric mechanical energy harvesting. Adv. Funct. Mater. 2022, 32, 1; https://doi.org/10.1002/adfm.202109492.Search in Google Scholar

33. Jaworski, A., Piatek, J., Mereacre, L., Braun, C., Slabon, A. 14N, 13C, and 119Sn solid-state NMR characterization of tin(II) carbodiimide Sn(NCN). Z. Naturforsch. 2021, 76b, 745; https://doi.org/10.1515/znb-2021-0122.Search in Google Scholar

34. Hei, X., Fang, Y., Teat, S. J., Farrington, C., Bonite, M., Li, J. Copper(I) iodide-based organic-inorganic hybrid compounds as phosphor materials. Z. Naturforsch. 2021, 76b, 759; https://doi.org/10.1515/znb-2021-0126.Search in Google Scholar

35. John, Ł. Selected developments and medical applications of organic–inorganic hybrid biomaterials based on functionalized spherosilicates. Mater. Sci. Eng. C 2018, 88, 172; https://doi.org/10.1016/j.msec.2018.02.007.Search in Google Scholar PubMed

36. Zhou, X., Liu, W., Zhang, J., Wu, C., Ou, X., Tian, C., Lin, Z., Dang, Z. Biogenic calcium carbonate with hierarchical organic-inorganic composite structure enhancing the removal of Pb(II) from wastewater. ACS Appl. Mater. Interfaces 2017, 9, 35785; https://doi.org/10.1021/acsami.7b09304.Search in Google Scholar PubMed

37. Su, Y., Cestellos-Blanco, S., Kim, J. M., ShenxiaoKong, Y. Q., Lu, D., Liu, C., Zhang, H., Cao, Y., Yang, P. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation. Joule 2020, 4, 800; https://doi.org/10.1016/j.joule.2020.03.001.Search in Google Scholar

38. Gary, J. H., Handwerk, G. E. Petroleum Refining: Technology and Economics, 5th ed; CRC Press: Boca Raton, Florida, 2007.10.4324/9780203907924Search in Google Scholar

39. Schulz, H. Short history and present trends of Fischer-Tropsch synthesis. Appl. Catal., A 1999, 186, 3; https://doi.org/10.1016/s0926-860x(99)00160-x.Search in Google Scholar

40. Dub, P. A., Gordon, J. C. The role of the metal-bound N–H functionality in Noyori-type molecular catalysts. Nat. Rev. Chem. 2018, 2, 396; https://doi.org/10.1038/s41570-018-0049-z.Search in Google Scholar

41. Nicholas, C. P. Dehydration, dienes, high octane, and high pressures: contributions from vladimir nikolaevich ipatieff, a father of catalysis. ACS Catal. 2018, 8, 8531; https://doi.org/10.1021/acscatal.8b02310.Search in Google Scholar

42. Jangbarwala, J. Chapter Seven – Applications. Presented at the; Elsevier Science: Amsterdam, 2017.10.1016/B978-0-323-51104-9.00007-8Search in Google Scholar

43. Kumari, P., Lal, S., Singhal, A. Advanced applications of Green Materials in Catalysis Applications; LTD: Amsterdam, 2021; pp. 545–571.10.1016/B978-0-12-820484-9.00022-2Search in Google Scholar

44. Goodman, E. D., Zhou, C., Cargnello, M. Design of organic/inorganic hybrid catalysts for energy and environmental applications. ACS Cent. Sci. 2020, 6, 1916; https://doi.org/10.1021/acscentsci.0c01046.Search in Google Scholar PubMed PubMed Central

45. Ünver, H. Synthesis, X-ray characterization and catalytic homogenous alcohol oxidation activity of Co(II)-carboxamide complex with green oxidant (H2O2) under mild conditions. Z. Kristallogr. 2020, 235, 237; https://doi.org/10.1515/zkri-2020-0038.Search in Google Scholar

46. Mendes-Felipe, C., Veloso-Fernández, A., Vilas-Vilela, J. L., Ruiz-Rubio, L. Hybrid organic–inorganic membranes for photocatalytic water remediation. Catalysts 2022, 12, 1; https://doi.org/10.3390/catal12020180.Search in Google Scholar

47. Le Quéré, C., Peters, G. P., Friedlingstein, P., Andrew, R. M., Canadell, J. G., Davis, S. J., Jackson, R. B., Jones, M. W. Fossil CO2 emissions in the post-COVID-19 era. Nat. Clim. Change 2021, 11, 197; https://doi.org/10.1038/s41558-021-01001-0.Search in Google Scholar

48. Yang, C., Li, S., Zhang, Z., Wang, H., Liu, H., Jiao, F., Guo, Z., Zhang, X., Hu, W. Organic–inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 1; https://doi.org/10.1002/smll.202001847.Search in Google Scholar PubMed

49. Que, M., Zhao, Y., Pan, L., Yang, Y., He, Z., Yuan, H., Chen, J., Zhu, G. Colloidal formamidinium lead bromide quantum dots for photocatalytic CO2 reduction. Mater. Lett. 2021, 282, 128695; https://doi.org/10.1016/j.matlet.2020.128695.Search in Google Scholar

50. Chen, C., Sun, J., Zhang, Y., Mu, J., Li, W., Song, Y. Adsorption characteristics of CH4 and CO2 in organic-inorganic slit pores. Fuel 2020, 265, 116969; https://doi.org/10.1016/j.fuel.2019.116969.Search in Google Scholar

51. Tao, L., Huang, J., Dastan, D., Li, J., Yin, X., Wang, Q. Flue gas separation at organic-inorganic interface under geological conditions. Surf. Interface 2021, 27, 101462; https://doi.org/10.1016/j.surfin.2021.101462.Search in Google Scholar

52. Tian, X. J., Yu, Y. Z., Lu, Q., Zhang, X. M. Organic-inorganic high-valence Sn18-oxo clusters: direct utilization of an inorganic Sn(IV) source to improve the nuclearity and electrocatalytic CO2 Reduction properties. Inorg. Chem. 2022, 61, 6037; https://doi.org/10.1021/acs.inorgchem.2c00038.Search in Google Scholar PubMed

53. Chen, J. Y., Chen, S. Y., Chen, W. T., Yin, M. C., Wang, C. M. Genuine pores in a stable zinc phosphite for high H2 adsorption and CO2 capture. Chem. Eur. J. 2022, 28, 2; https://doi.org/10.1002/chem.202200732.Search in Google Scholar PubMed

54. Feitosa, L. F., Pozes, B. B., Silva, A. S., Castro, L. F., Júnior, L. S. C., Quitete, C. B., Fraga, M. A. Surface molecular design of organic-inorganic mesoporous hybrid materials for CO2 capture. J. Environ. Chem. Eng. 2021, 9, 104951; https://doi.org/10.1016/j.jece.2020.104951.Search in Google Scholar

55. Zhang, H., Chen, Y., Wang, H., Wang, H., Ma, W., Zong, X., Li, C. Carbon encapsulation of organic–inorganic hybrid perovskite toward efficient and stable photo-electrochemical carbon dioxide reduction. Adv. Energy Mater. 2020, 10, 1; https://doi.org/10.1002/aenm.202002105.Search in Google Scholar

56. Wang, L., Huang, G., Zhang, L., Lian, R., Huang, J., She, H., Liu, C., Wang, Q. Construction of TiO2-covalent organic framework Z-Scheme hybrid through coordination bond for photocatalytic CO2 conversion. J. Energy Chem. 2022, 64, 85; https://doi.org/10.1016/j.jechem.2021.04.053.Search in Google Scholar

57. Mohammadizadeh, Z. N., Hamidinasab, M., Ahadi, N., Bodaghifard, M. A. A novel hybrid organic-inorganic nanomaterial: preparation, characterization and application in synthesis of diverse heterocycles. Polycyclic Aromat. Compd. 2020, 42, 1282.10.1080/10406638.2020.1776346Search in Google Scholar

58. Nikoorazm, M., Rezaei, Z., Tahmasbi, B. Two Schiff-base complexes of copper and zirconium oxide supported on mesoporous MCM-41 as an organic–inorganic hybrid catalysts in the chemo and homoselective oxidation of sulfides and synthesis of tetrazoles. J. Porous Mater. 2020, 27, 671; https://doi.org/10.1007/s10934-019-00835-6.Search in Google Scholar

59. Singh, J., Yadav, P., Pal, A. K., Mishra, V. Water pollutants: origin and status. In Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors. Springer: Singapore, 2019.10.1007/978-981-15-0671-0_2Search in Google Scholar

60. Ali, I., Gupta, V. K. Advances in water treatment by adsorption technology. Nat. Protoc. 2006, 1, 2661; https://doi.org/10.1038/nprot.2006.370.Search in Google Scholar PubMed

61. Meng, S., Wen, S., Han, G., Wang, X., Feng, Q. Wastewater treatment in mineral processing of non-ferrous metal resources: a review. Water 2022, 14, 726; https://doi.org/10.3390/w14050726.Search in Google Scholar

62. Malik, S., Kishore, S., Prasad, S., Shah, M. P. A comprehensive review on emerging trends in industrial wastewater research. J. Basic Microbiol. 2022, 62, 296; https://doi.org/10.1002/jobm.202100554.Search in Google Scholar PubMed

63. Zhou, L. J., Ying, G. G., Liu, S., Zhao, J. L., Yang, B., Chen, Z. F., Lai, H. J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci. Total Environ. 2013, 452–453, 365; https://doi.org/10.1016/j.scitotenv.2013.03.010.Search in Google Scholar PubMed

64. Li, W., Li, L., Qiu, G. Energy consumption and economic cost of typical wastewater treatment systems in Shenzhen, China. J. Clean. Prod. 2017, 163, S374; https://doi.org/10.1016/j.jclepro.2015.12.109.Search in Google Scholar

65. Dotto, G. L., McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 2020, 8, 103988; https://doi.org/10.1016/j.jece.2020.103988.Search in Google Scholar

66. Chenab, K. K., Sohrabi, B., Jafari, A., Ramakrishna, S. Water treatment: functional nanomaterials and applications from adsorption to photodegradation. Mater. Today Chem. 2020, 16, 100262; https://doi.org/10.1016/j.mtchem.2020.100262.Search in Google Scholar

67. Budnyak, T. M., Piątek, J., Pylypchuk, I. V., Klimpel, M., Sevastyanova, O., Lindström, M. E., Gun’ko, V. M., Slabon, A. Membrane-filtered kraft lignin-silica hybrids as bio-based sorbents for cobalt(II) ion recycling. ACS Omega 2020, 5, 10847; https://doi.org/10.1021/acsomega.0c00492.Search in Google Scholar PubMed PubMed Central

68. Bhushan, B., Kotnala, S., Nayak, A. Fabrication of a biogenic inorganic-organic hybrid composite adsorbent: optimization and physico-chemical studies. Mater. Today Proc. 2022, 62, 4419; https://doi.org/10.1016/j.matpr.2022.04.899.Search in Google Scholar

69. Ahmad, H., Binsharfan, I. I., Khan, R. A. 3D nanoarchitecture of polyaniline-MoS2 hybrid material for Hg(II) adsorption properties. Polymers 2020, 12, 1; https://doi.org/10.3390/polym12112731.Search in Google Scholar PubMed PubMed Central

70. Xue, S., Xiao, Y., Wang, G., Fan, J., Wan, K., He, Q., Gao, M., Miao, Z. Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid. Colloids Surf., A 2021, 616, 126333; https://doi.org/10.1016/j.colsurfa.2021.126333.Search in Google Scholar

71. Piątek, J., Budnyak, T. M., Monti, S., Barcaro, G., Gueret, R., Grape, E. S., Jaworski, A., Inge, A. K., Rodrigues, B. V. M., Slabon, A. Toward sustainable Li-ion battery recycling: green metal − organic framework as a molecular sieve for the selective separation of cobalt and nickel. ACS Sustainable Chem. Eng. 2021, 9, 9770; https://doi.org/10.1021/acssuschemeng.1c02146.Search in Google Scholar

72. Wawrzkiewicz, M., Podkościelna, B., Jesionowski, T., Klapiszewski, Ł. Functionalized microspheres with co-participated lignin hybrids as a novel sorbents for toxic C.I. Basic Yellow 2 and C.I. Basic Blue 3 dyes removal from textile sewage. Ind. Crops Prod. 2022, 180, 114785; https://doi.org/10.1016/j.indcrop.2022.114785.Search in Google Scholar

73. Budnyak, T. M., Onwumere, J., Pylypchuk, I. V., Jaworski, A., Chen, J., Rokicińska, A., Lindström, M. E., Kuśtrowski, P., Sevastyanova, O., Slabon, A. LignoPhot: conversion of hydrolysis lignin into the photoactive hybrid lignin/Bi4O5Br2/BiOBr composite for simultaneous dyes oxidation and Co2+ and Ni2+ recycling. Chemosphere 2021, 279, 130538; https://doi.org/10.1016/j.chemosphere.2021.130538.Search in Google Scholar PubMed

74. Nair, S. S., Chen, J., Slabon, A., Mathew, A. P. Converting cellulose nanocrystals into photocatalysts by functionalisation with titanium dioxide nanorods and gold nanocrystals. RSC Adv. 2020, 10, 37374; https://doi.org/10.1039/d0ra05961g.Search in Google Scholar PubMed PubMed Central

75. Onwumere, J., Piątek, J., Budnyak, T., Chen, J., Budnyk, S., Karim, Z., Thersleff, T., Kuśtrowski, P., Mathew, A. P., Slabon, A. CelluPhot: hybrid cellulose-bismuth oxybromide membrane for pollutant removal. ACS Appl. Mater. Interfaces 2020, 12, 42891; https://doi.org/10.1021/acsami.0c12739.Search in Google Scholar PubMed PubMed Central

76. Abdelhamid, H. N., Mathew, A. P. Cellulose-zeolitic imidazolate frameworks (CelloZIFs) for multifunctional environmental remediation: adsorption and catalytic degradation. Chem. Eng. J. 2021, 426, 131733; https://doi.org/10.1016/j.cej.2021.131733.Search in Google Scholar

77. Nasi, R., Sannino, F., Picot, P., Thill, A., Oliviero, O., Esposito, S., Armandi, M., Bonelli, B. Hybrid organic-inorganic nanotubes effectively adsorb some organic pollutants in aqueous phase. Appl. Clay Sci. 2020, 186, 105449; https://doi.org/10.1016/j.clay.2020.105449.Search in Google Scholar

78. Li, P., Kim, S., Jin, J., Do, H. C., Park, J. H. Efficient photodegradation of volatile organic compounds by iron-based metal-organic frameworks with high adsorption capacity. Appl. Catal., B 2020, 263, 1; https://doi.org/10.1016/j.apcatb.2019.118284.Search in Google Scholar

79. Abas, N., Kalair, A., Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31; https://doi.org/10.1016/j.futures.2015.03.003.Search in Google Scholar

80. Liu, Y., Liu, P., Jiang, Q., Jiang, F., Liu, J., Liu, G., Liu, C., Du, Y., Xu, J. Organic/inorganic hybrid for flexible thermoelectric fibers. Chem. Eng. J. 2021, 405, 126510; https://doi.org/10.1016/j.cej.2020.126510.Search in Google Scholar

81. Zhang, W. X., Kholkin, A., Rocha, J., Xu, W. J., Romanyuk, K., Martinho, J. M. G., Zeng, Y., Zhang, X. W., Ushakov, A., Shur, V., Chen, X. M. Photoresponsive organic-inorganic hybrid ferroelectric designed at the molecular level. J. Am. Chem. Soc. 2020, 142, 16990; https://doi.org/10.1021/jacs.0c06048.Search in Google Scholar PubMed

82. Wang, H., Wang, X., Zhang, H., Ma, W., Wang, L., Zong, X. Organic−inorganic hybrid perovskites: game-changing candidates for solar fuel production. Nano Energy 2020, 71, 104647; https://doi.org/10.1016/j.nanoen.2020.104647.Search in Google Scholar

83. Singh, S., Chen, H., Shahrokhi, S., Wang, L. P., Lin, C. H., Hu, L., Guan, X., Tricoli, A., Xu, Z. J., Wu, T. Hybrid organic-inorganic materials and composites for photoelectrochemical water splitting. ACS Energy Lett. 2020, 5, 1487; https://doi.org/10.1021/acsenergylett.0c00327.Search in Google Scholar

84. Sivula, K. Are organic semiconductors viable for robust, high-efficiency artificial photosynthesis? ACS Energy Lett. 2020, 5, 1970; https://doi.org/10.1021/acsenergylett.0c01084.Search in Google Scholar

85. Zhao, X., Li, Z., Guo, Q., Yang, X., Nie, G. High performance organic-inorganic hybrid material with multi-color change and high energy storage capacity for intelligent supercapacitor application. J. Alloys Compd. 2021, 855, 157480; https://doi.org/10.1016/j.jallcom.2020.157480.Search in Google Scholar

86. Devi, N., Ghosh, S. K., Perla, V. K., Mallick, K. Organic-inorganic complexation chemistry-mediated synthesis of bismuth-manganese bimetallic oxide for energy storage application. ACS Omega 2020, 5, 18693; https://doi.org/10.1021/acsomega.0c01576.Search in Google Scholar PubMed PubMed Central

87. Mohamed, M. G., Chen, W. C., EL-Mahdy, A. F. M., Kuo, S. W. Porous organic/inorganic polymers based on double-decker silsesquioxane for high-performance energy storage. J. Polym. Res. 2021, 28, 219.10.1007/s10965-021-02579-xSearch in Google Scholar

88. Jadhav, R. G., Singh, D., Mobin, S. M., Das, A. K. Engineering of electrodeposited binder-free organic-nickel hydroxide based nanohybrids for energy storage and electrocatalytic alkaline water splitting. Sustainable Energy Fuels 2020, 4, 1320; https://doi.org/10.1039/c9se00483a.Search in Google Scholar

89. Lu, C., Ma, Z., Jäger, J., Budnyak, T. M., Dronskowski, R., Rokicińska, A., Kuśtrowski, P., Pammer, F., Slabon, A. NiO/Poly(4-alkylthiazole) hybrid interface for promoting spatial charge separation in photoelectrochemical water reduction. ACS Appl. Mater. Interfaces 2020, 12, 29173; https://doi.org/10.1021/acsami.0c03975.Search in Google Scholar PubMed PubMed Central

90. Zhang, Y., Li, P., Qiao, L., Sun, J., Li, G., Yan, Y., Liu, A., Ma, T., Hao, C. Organic/inorganic hybrid quaternary ionogel electrolyte with low lithium - ion association and uniform lithium flux for lithium secondary batteries. Electrochim. Acta 2022, 416, 140292; https://doi.org/10.1016/j.electacta.2022.140292.Search in Google Scholar

91. Lee, M. J., Shin, D. O., Kim, J. Y., Oh, J., Kang, S. H., Kim, J., Kim, K. M., Lee, Y. M., Kim, S. O., Lee, Y. G. Interfacial barrier free organic-inorganic hybrid electrolytes for solid state batteries. Energy Storage Mater. 2021, 37, 306; https://doi.org/10.1016/j.ensm.2021.02.013.Search in Google Scholar

92. Peake, C. L., Kibler, A. J., Newton, G. N., Walsh, D. A. Organic-inorganic hybrid polyoxotungstates as configurable charge carriers for high energy redox flow batteries. ACS Appl. Energy Mater. 2021, 4, 8765; https://doi.org/10.1021/acsaem.1c00800.Search in Google Scholar

93. Jiao, S., Ding, T., Zhai, R., Wu, Y., Chen, S., Wei, W. Effective accommodation and conversion of polysulfides using organic-inorganic hybrid frameworks for long-life lithium-sulfur batteries. Nanoscale 2020, 12, 13377; https://doi.org/10.1039/d0nr01239d.Search in Google Scholar PubMed

94. Guo, Z., Huang, J., Dong, X., Xia, Y., Yan, L., Wang, Z., Wang, Y. An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 2020, 11, 949; https://doi.org/10.1038/s41467-020-14748-5.Search in Google Scholar PubMed PubMed Central

95. López, L. T., Ramírez, D., Jaramillo, F., Calderón, J. A. Novel hybrid organic-inorganic CH3NH3NiCl3 active material for high-capacity and sustainable lithium-ion batteries. Electrochim. Acta 2020, 357, 136882.10.1016/j.electacta.2020.136882Search in Google Scholar

96. Du, Y., Wang, X., Man, J., Sun, J. A novel organic-inorganic hybrid V2O5@polyaniline as high-performance cathode for aqueous zinc-ion batteries. Mater. Lett. 2020, 272, 127813; https://doi.org/10.1016/j.matlet.2020.127813.Search in Google Scholar

97. Ma, X., Cao, X., Yao, M., Shan, L., Shi, X., Fang, G., Pan, A., Lu, B., Zhou, J., Liang, S. Organic–inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv. Mater. 2022, 34, 2105452; https://doi.org/10.1002/adma.202105452.Search in Google Scholar PubMed

98. Lee, M., Kim, M. S., Oh, J. M., Park, J. K., Paek, S. M. Two-dimensional organic/inorganic hybrid nanosheet electrodes for enhanced electrical conductivity toward stable and high-performance sodium-ion batteries. ChemSusChem 2021, 14, 3244; https://doi.org/10.1002/cssc.202101534.Search in Google Scholar PubMed

99. Vedachalam, S., Sekar, P., Nithya, C., Murugesh, N., Karvembu, R. Dopant-free main group elements supported covalent organic-inorganic hybrid conducting polymer for sodium-ion battery application. ACS Appl. Energy Mater. 2022, 5, 557; https://doi.org/10.1021/acsaem.1c03063.Search in Google Scholar

100. Chen, Y., Zhao, W., Zhang, Q., Yang, G., Zheng, J., Tang, W., Xu, Q., Lai, C., Yang, J., Peng, C. Armoring LiNi1/3Co1/3Mn1/3O2 cathode with reliable fluorinated organic–inorganic hybrid interphase layer toward durable high rate battery. Adv. Funct. Mater. 2020, 30, 1; https://doi.org/10.1002/adfm.202000396.Search in Google Scholar

101. Rosero-Navarro, N. C., Kajiura, R., Miura, A., Tadanaga, K. Organic−inorganic hybrid materials for interface design in all-solid-state batteries with a garnet-type solid electrolyte. ACS Appl. Energy Mater. 2020, 3, 11260; https://doi.org/10.1021/acsaem.0c02164.Search in Google Scholar

102. Fu, J., Xu, Y., Dong, L., Chen, L., Lu, Q., Li, M., Zeng, X., Dai, S., Chen, G., Shi, L. Multiclaw-shaped octasilsesquioxanes functionalized ionic liquids toward organic-inorganic composite electrolytes for lithium-ion batteries. Chem. Eng. J. 2021, 405, 126942; https://doi.org/10.1016/j.cej.2020.126942.Search in Google Scholar

103. Chen, H., Fang, Y., Liu, X., Jiang, X., Zhong, F., Yang, H., Ai, X., Cao, Y. A controllable thermal-sensitivity separator with an organic-inorganic hybrid interlayer for high-safety lithium-ion batteries. Mater. Chem. Front. 2021, 5, 2313; https://doi.org/10.1039/d0qm01061h.Search in Google Scholar

104. Liu, P., Zhang, J., Zhong, L., Huang, S., Gong, L., Han, D., Wang, S., Xiao, M., Meng, Y. Interphase building of organic–inorganic hybrid polymer solid electrolyte with uniform intermolecular Li+ path for stable lithium metal batteries. Small 2021, 17, 2102454; https://doi.org/10.1002/smll.202102454.Search in Google Scholar PubMed

105. Shin, S. C., Kim, J., Modigunta, J. K. R., Murali, G., Park, S., Lee, S., Lee, H., Park, S. Y., In, I. Bio-mimicking organic-inorganic hybrid ladder-like polysilsesquioxanes as a surface modifier for polyethylene separator in lithium-ion batteries. J. Membr. Sci. 2021, 620, 118886; https://doi.org/10.1016/j.memsci.2020.118886.Search in Google Scholar

106. Gopakumar, A., Ren, P., Chen, J., Manzolli Rodrigues, B. V., Vincent Ching, H. Y., Jaworski, A., Doorslaer, S. V., Rokicińska, A., Kuśtrowski, P., Barcaro, G., Monti, S., Slabon, A., Das, S. Lignin-supported heterogeneous photocatalyst for the direct generation of H2O2 from seawater. J. Am. Chem. Soc. 2022, 144, 2603; https://doi.org/10.1021/jacs.1c10786.Search in Google Scholar PubMed

107. Fattal, H., Creason, T. D., Delzer, C. J., Yangui, A., Hayward, J. P., Ross, B. J., Du, M. H., Glatzhofer, D. T., Saparov, B. Zero-dimensional hybrid organic-inorganic indium bromide with blue emission. Inorg. Chem. 2021, 60, 1045; https://doi.org/10.1021/acs.inorgchem.0c03164.Search in Google Scholar PubMed

108. Kumar, R., Kushvaha, S. S., Kumar, M., Kumar, M. S., Gupta, G., Kandpal, K., Kumar, P. Flexible perylenediimide/GaN organic–inorganic hybrid system with exciting optical and interfacial properties. Sci. Rep. 2020, 10, 1; https://doi.org/10.1038/s41598-020-67531-3.Search in Google Scholar PubMed PubMed Central

109. Fazal, B. R., Becker, T., Kinsella, B., Lepkova, K. A review of plant extracts as green corrosion inhibitors for CO2 corrosion of carbon steel. npj Mater. Degrad. 2022, 6; https://doi.org/10.1038/s41529-021-00201-5.Search in Google Scholar

110. Aadad, H. E., Galai, M., Ouakki, M., Elgendy, A., Touhami, M. E., Chahine, A. Improvement of the corrosion resistance of mild steel in sulfuric acid by new organic-inorganic hybrids of Benzimidazole-Pyrophosphate: facile synthesis, characterization, experimental and theoretical calculations (DFT and MC). Surf. Interface 2021, 24, 101084; https://doi.org/10.1016/j.surfin.2021.101084.Search in Google Scholar

111. Jiang, W., Zhou, G., Duan, J., Liu, D., Zhang, Q., Tian, F. Synthesis and characterization of a multifunctional sustained-release organic-inorganic hybrid microcapsule with self-healing and flame-retardancy properties. ACS Appl. Mater. Interfaces 2021, 13, 15668; https://doi.org/10.1021/acsami.1c01540.Search in Google Scholar PubMed

112. Xia, M., Niu, G., Liu, L., Gao, R., Jin, T., Wan, P., Pan, W., Zhang, X., Xie, Z., Teale, S., Cai, Z., Luo, J., Zhao, S., Wu, H., Chen, S., Zheng, Z., Xie, Q., Ouyang, X., Sargent, E. H., Tang, J. Organic–inorganic hybrid perovskite scintillators for mixed field radiation detection. InfoMat 2022, 4, 1; https://doi.org/10.1002/inf2.12325.Search in Google Scholar

113. Mao, P., Tang, Y., Wang, B., Fan, D., Wang, Y. Organic-inorganic hybrid cuprous halide scintillators for flexible X-ray imaging. ACS Appl. Mater. Interfaces 2022, 14, 22295–22301; https://doi.org/10.1021/acsami.2c02660.Search in Google Scholar PubMed

114. Park, W., Shin, H., Choi, B., Rhim, W. K., Na, K. Keun Han, D.: advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 2020, 114, 100686; https://doi.org/10.1016/j.pmatsci.2020.100686.Search in Google Scholar

115. Zahirinejad, S., Hemmati, R., Homaei, A., Dinari, A., Hosseinkhani, S., Mohammadi, S., Vianello, F. Nano-organic supports for enzyme immobilization: scopes and perspectives. Colloids Surf., B 2021, 204, 111774; https://doi.org/10.1016/j.colsurfb.2021.111774.Search in Google Scholar PubMed

116. Yang, C., Lin, Z. I., Chen, J. A., Xu, Z., Gu, J., Law, W. C., Yang, J. H. C., Chen, C. K. Organic/inorganic self-assembled hybrid nano-architectures for cancer therapy applications. Macromol. Biosci. 2022, 22, 1; https://doi.org/10.1002/mabi.202100349.Search in Google Scholar PubMed

117. Hu, D., Ren, Q., Li, Z., Zhang, L. Chitosan-based biomimetically mineralized composite materials in human hard tissue repair. Molecules 2020, 25, 1; https://doi.org/10.3390/molecules25204785.Search in Google Scholar PubMed PubMed Central

118. Rodrigues, B. V. M., Razzino, C. A., de Carvalho Oliveira, F., Marciano, F. R., Lobo, A. O. On the design and properties of scaffolds based on vertically aligned carbon nanotubes transferred onto electrospun poly (lactic acid) fibers. Mater. Des. 2017, 127, 183; https://doi.org/10.1016/j.matdes.2017.04.074.Search in Google Scholar

119. dos Santos Silva, A., Rodrigues, B. V. M., Oliveira, F. C., Carvalho, J. O., de Vasconcellos, L. M. R., de Araújo, J. C. R., Marciano, F. R., Lobo, A. O. Characterization and in vitro and in vivo assessment of poly(butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J. Polym. Res. 2019, 26, 53.10.1007/s10965-019-1706-8Search in Google Scholar

120. Santana-Melo, G. F., Rodrigues, B. V. M., da Silva, E., Ricci, R., Marciano, F. R., Webster, T. J., Vasconcellos, L. M. R., Lobo, A. O. Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids Surf., B 2017, 155, 544; https://doi.org/10.1016/j.colsurfb.2017.04.053.Search in Google Scholar PubMed

121. Kniep, R., Busch, S. Biomimetic growth and self-assembly of fluorapatite aggregates by diffusion into denatured collagen matrices. Angew. Chem. Int. Ed. 1996, 35, 2623.10.1002/anie.199626241Search in Google Scholar

122. Liu, W., Bi, W., Sun, Y., Wang, L., Yu, X., Cheng, R., Yu, Y., Cui, W. Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration. Mater. Sci. Eng. C 2020, 110, 110670; https://doi.org/10.1016/j.msec.2020.110670.Search in Google Scholar PubMed

123. Hu, Y., Cao, S., Chen, J., Zhao, Y., He, F., Li, Q., Zou, L., Shi, C. Biomimetic fabrication of icariin loaded nano hydroxyapatite reinforced bioactive porous scaffolds for bone regeneration. Chem. Eng. J. 2020, 394, 124895; https://doi.org/10.1016/j.cej.2020.124895.Search in Google Scholar

124. Ye, Z., Sang, T., Li, K., Fischer, N. G., Mutreja, I., Echeverría, C., Kumar, D., Tang, Z., Aparicio, C. Hybrid nanocoatings of self-assembled organic-inorganic amphiphiles for prevention of implant infections. Acta Biomater. 2022, 140, 338; https://doi.org/10.1016/j.actbio.2021.12.008.Search in Google Scholar PubMed PubMed Central

125. Chen, Q., Chen, Y., Zhang, W., Huang, Q., Hu, M., Peng, D., Peng, C., Wang, L., Chen, W. Acidity and glutathione dual-responsive polydopamine-coated organic-inorganic hybrid hollow mesoporous silica nanoparticles for controlled drug delivery. ChemMedChem 2020, 15, 1940; https://doi.org/10.1002/cmdc.202000263.Search in Google Scholar PubMed

126. Eivazzadeh-Keihan, R., Ghafori Gorab, M., Aghamirza Moghim Aliabadi, H., mahdavi, M., Akbarzadeh, A. R., Maleki, A., Ghafuri, H. Novel magnetic organic–inorganic hybrids based on aromatic polyamides and ZnFe2O4 nanoparticles with biological activity. Sci. Rep. 2021, 11, 1; https://doi.org/10.1038/s41598-021-99842-4.Search in Google Scholar PubMed PubMed Central

127. Qian, Y., Xu, C., Xiong, W., Jiang, N., Zheng, Y., He, X., Ding, F., Lu, X., Shen, J. Dual cross-linked organic-inorganic hybrid hydrogels accelerate diabetic skin wound healing. Chem. Eng. J. 2021, 417, 129335; https://doi.org/10.1016/j.cej.2021.129335.Search in Google Scholar

Received: 2022-09-21
Accepted: 2022-12-04
Published Online: 2022-12-22
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0054/html
Scroll to top button