Skip to main content
Log in

Epstein–Barr Virus: Evaluation of gp350 and EBNA2 Gene Variability

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Approximately 90% of the world’s population is infected with the Epstein–Barr virus (EBV). Damage to health and high economical costs require the development of vaccines against EBV. The variability of individual genes may affect the success of the vaccination campaign and will necessitate dynamic update of antigenic composition of vaccines. The aim of this study was to assess the variability of EBV gp350 and EBNA2 genes isolated from saliva of dental clinic personnel in Moscow oblast. Biosamples were obtained from 105 employees at four dental clinics. For EBV DNA-positive samples, the EBNA2 and gp350 genes were amplified using nested PCR. The nucleotide sequence of gp350 gene was determined during sequencing. A maximum likelihood phylogenetic tree was constructed from the N-terminal fragment of gp350 protein, using B95-8 strain as a reference genome. Phylogenetic analysis also included 222 EBV samples from the NCBI database. The EBNA2 genotype and the whole gp350 gene sequence were determined for 31 DNA samples. Based on the phylogenetic analysis of gp350 protein, the Russian virus population was uniformly distributed along the tree. Meanwhile, 30 samples fell into the Aa clade (A, genotype A for EBNA2 gene; a, similarity of the gp350 sequence with B95-8 [NC_007605.1]) and one sample belonged to the Bb clade (B, genotype B for EBNA2; b , similarity of gp350 with Jijoye [LN827800.1]). For 30 Russian samples of Aa genotype, 22 individual profiles and 16 unique mutations were found. Identical gp350 profiles were found amongst staff working in close professional contact. The identified features indicated the need for further phylogenetic studies of samples collected in Russia to develop and introduce vaccines and monitor their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Solomay, T.V., Semenenko, T.A., Karazhas, N.V., Rybalkina, T.N., Kornienko, M.N., Bosh’yan, R.E., et al., Assessing risks of infection with herpes viruses during transfusion of donor blood and its components, Health Risk Anal., 2020, vol. 2, pp. 135–142. https://doi.org/10.21668/health.risk/2020.2.15.eng

    Article  Google Scholar 

  2. Solomay, T.V., Long-term dynamics of morbidity and territorial spread of infectious mononucleosis, Zdravookhranenie Rossiiskoi Federatsii, 2019, vol. 63, no. 4, pp. 186–192.

    Google Scholar 

  3. De Jong, N.M.C., Aartse, A., Van Gils, M.J., and Eggink, D., Development influenza vaccines by targeting the conserved regions of the hemagglutinin stem and head domains, Expert Rev. Vaccines, 2020, vol. 19, no. 6, pp. 563–577. https://doi.org/10.1080/14760584.2020.1777861

    Article  CAS  Google Scholar 

  4. Epstein Barr Virus, vol. 1: One Herpes Virus: Many Diseases, Münz, C., Ed., Cham: Springer, 2015.

    Google Scholar 

  5. Correia, S., Bridges, R., Wegner, F., Venturini, C., Palser, A., Middeldorp, J.M., et al., Sequence variation of Epstein-Barr virus: Viral types, geography, codon usage, and diseases, J. Virol., 2018, vol. 92, no. 22, p. e01132-18. https://doi.org/10.1128/JVI.01132-18

    Article  CAS  Google Scholar 

  6. Zimber, U., Adldinger, H.K., Lenoir, G.M., Vuillaume, M., Knebel-Doeberitz, M.V., Laux, G., et al., Geographical prevalence two types Epstein–Barr, Virology, 1986, vol. 154, no. 1, pp. 56–66. https://doi.org/10.1016/0042-6822(86)90429-0

    Article  CAS  Google Scholar 

  7. Smith, N.A., Baresel, P.C., Jackson, C.L., Ogolla, S., Toko, E.N., Heit, S., et al., Differences in the Epstein–Barr virus gp350 IgA antibody response are associated with increased risk for coinfection with a second strain of Epstein–Barr virus, J. Infect. Dis., 2019, vol. 219, no. 6, pp. 955–963. https://doi.org/10.1093/infdis/jiy601

    Article  CAS  Google Scholar 

  8. Zanella, L., Riquelme, I., Buchegger, K., Abanto, M., Ili, C., and Brebi, P., A reliable Epstein–Barr Virus classification based on phylogenomic and population analyses, Sci. Rep., 2019, vol. 9, no. 1, p. 9829. https://doi.org/10.1038/s41598-019-45986-3

    Article  CAS  Google Scholar 

  9. Li, H.P. and Chang, Y.S., Epstein-Barr virus latent membrane protein 1: structure and functions, J. Biomed. Sci., 2003, vol. 10, pp. 490–504.

    Article  CAS  Google Scholar 

  10. Senyuta, N.B., Smirnova, K.V., Diduk, S.V., Goncharova, E.V., Shcherbak, L.N., and Gurtsevich, V.E., Structural and functional characteristics of the LMP1 oncogene in patients with tumors associated and not associated with Epstein–Barr Virus, Mol. Genet., Microbiol. Virol., 2016, vol. 2, pp. 87–93. https://doi.org/10.3103/S0891416816020099

    Article  Google Scholar 

  11. Smirnova, K.V, Senyuta, N.B., Botezatu, I.V., Dushen’kina, T.E., Lubenskaya, A.K., Frolovskaya, A.A., et al., Epstein–Barr virus in ethnic Tatars: infection and sequence variants of the LMP1 oncogene, Usp. Mol. Onkol., 2018, vol. 5, no. 3, pp. 65–74.

    Article  Google Scholar 

  12. Tzellos, S. and Farrell, P.J., Epstein–Barr virus sequence variation-biology and disease, Pathogens, 2012, vol. 1, no. 2, pp. 156–174. https://doi.org/10.3390/pathogens1020156

    Article  CAS  Google Scholar 

  13. Berenstein, A.J., Lorenzetti, M.A., and Preciado, M.V., Recombination rates along the entire Epstein–Barr virus genome display a highly heterogeneous landscape, Infect., Genet. Evol., 2018, vol. 65, pp. 96–103. https://doi.org/10.1016/j.meegid.2018.07.022

    Article  CAS  Google Scholar 

  14. Correia, S., Palser, A., Elgueta Karstegl, C., Middeldorp, J.M., Ramayanti, O., Cohen, J.I., et al., Natural variation of Epstein–Barr virus genes, proteins, and primary microRNA, J. Virol., 2017, vol. 91, no. 15, p. e00375-17. https://doi.org/10.1128/JVI.00375-17

    Article  CAS  Google Scholar 

  15. Weiss, E.R., Alter, G., Ogembo, J.G., Henderson, J.L., Tabak, B., Bakiş, Y., et al., High Epstein–Barr virus load and genomic diversity are associated with generation of gp350-specific neutralizing antibodies following acute infectious mononucleosis, J. Virol., 2016, vol. 91, no. 1, p. e01562-16. https://doi.org/10.1128/JVI.01562-16

    Article  Google Scholar 

  16. Solomay, T.V., Semenenko, T.A., Filatov, N.N., Kostinov, M.P., and Il’ina, N.I., Epstein–Barr virus: vaccine development, Immunologiya, 2020, vol. 41, no. 4, pp. 381–390. https://doi.org/10.33029/0206-4952-2020-41-3-381-390

    Article  Google Scholar 

  17. Kawaguchi, A., Kanai, K., Satoh, Y., Touge, Ch., Nagata, K., Sairenji, T., and Inoue, Y., The evolution of Epstein–Barr virus inferred from the conservation and mutation of the virus glycoprotein gp350/220 gene, Virus Genes, 2009, vol. 38, no. 2, pp. 215–223. https://doi.org/10.1007/s11262-008-0323-0

    Article  CAS  Google Scholar 

  18. Seemann, T. and Notes, A., Prokka: rapid prokaryotic genome annotation, Bioinformatics, 2014, vol. 30, no. 14, pp. 2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  Google Scholar 

  19. Meng, G., Li, Y., Yang, Ch., and Liu, Sh., MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization, Nucleic Acids Res., 2019, vol. 47, no. 11, p. e63. https://doi.org/10.1093/nar/gkz173

    Article  CAS  Google Scholar 

  20. Nakamura, T., Yamada, K.D., Tomii, K., and Katoh, K., Parallelization of MAFFT for large-scale multiple sequence alignments, Bioinformatics, 2018, vol. 34, no. 14, pp. 2490–2492. https://doi.org/10.1093/bioinformatics/bty121

    Article  CAS  Google Scholar 

  21. Darriba, D., Taboada, G.L., Doallo, R., and Posada, D., ProtTest 3: fast selection of best-fit models of protein evolution, Bioinformatics, 2011, vol. 27, no. 8, pp. 1164–1165. https://doi.org/10.1093/bioinformatics/btr088

    Article  CAS  Google Scholar 

  22. Kozlov, A.M., Darriba, D., Flouri, T., Morel, B., and Stamatakis, A., RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference, Bioinformatics, 2019, vol. 35, no. 21, pp. 4453–4455. https://doi.org/10.1093/bioinformatics/btz305

    Article  CAS  Google Scholar 

  23. Yu, G., Using ggtree to visualize data on tree-like structures, Bioinformatics. 2020, vol. 69, no. 1, p. e96. https://doi.org/10.1002/cpbi.96

    Article  Google Scholar 

  24. Xu, Sh., Dai, Z., Guo, P., Fu, X., Liu, Sh., Zhou, L., et al., ggtreeExtra: compact visualization of richly annotated phylogenetic data, Mol. Biol. Evol., 2021, vol. 38, no. 9, pp. 4039–4042. https://doi.org/10.1093/molbev/msab166

    Article  CAS  Google Scholar 

  25. Koike, R., Nodomi, K., Watanabe, N., Ogata, Y., Takeichi, O., Takei, M., et al., Butyric acid in saliva of chronic patients induces transcription of the lytic switch activator BZLF1: A pilot study, In Vivo, 2020, vol. 34, no. 2, pp. 587–594. https://doi.org/10.21873/invivo.11811

    Article  CAS  Google Scholar 

  26. Abooj, J. and Varma, S.A., Prevalence of herpes virus in chronic patients with and without type 2 diabetes mellitus: A clinico-microbiological study, J. Oral Maxillofac. Pathol., 2021, vol. 25, no. 1, pp. 141–146. https://doi.org/10.4103/jomfp.JOMFP_154_20

    Article  Google Scholar 

  27. Solomay, T.V. and Semenenko, T.A., Prevention of transmission of infection caused by the Epstein–Barr virus in medical organizations (literature review), Gig. Sanit., 2021, vol. 100, no. 1, pp. 36–41. https://doi.org/10.47470/0016-9900-2021-100-1-36-41

    Article  Google Scholar 

  28. Solomay, T.V., Semenenko, T.A., and Bloch, A.I., The prevalence of antibodies to the Epstein–Barr virus in different age groups of the population of Europe and Asia: a systematic review and meta-analysis, Zdravookhranenie Rossiiskoi Federatsii, 2021, vol. 65, no. 3, pp. 276–286. https://doi.org/10.47470/0044-197X-2021-65-3-276-286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Solomai.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human beings performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of local ethics committee of Mechnikov Scientific Research Institute of Vaccines and Serums (protocol extract no. 1, March 23, 2021) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all participants involved in the study.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Larina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomai, T.V., Malakhova, M.V., Shitikov, E.A. et al. Epstein–Barr Virus: Evaluation of gp350 and EBNA2 Gene Variability. Mol. Genet. Microbiol. Virol. 37, 138–145 (2022). https://doi.org/10.3103/S0891416822030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416822030089

Keywords:

Navigation