Skip to main content
Log in

Adaptive Immunity Systems of Bacteria: Association with Self-Synthesizing Transposons, Polyfunctionality

  • REVIEWS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Microbial cells are constantly threatened by invasion of foreign genetic elements. There are many mobile genetic elements (MGEs), including viruses, plasmids, transposons, etc., that invade them. Such selective pressure provoked the production of various defense systems in bacteria and other microorganisms, such as restriction–modification, abortive infection, exclusion of phage superinfection, toxin–antitoxin modules, argonaute proteins, and adaptive immune response. In this paper, we will consider the adaptive immunity systems of bacteria and archaea (CRISPR-Cas), their complex organization and functioning, the data on their origin associated with a new class of transposons, self-replicating casposons and other MGEs, and their role in the regulation of virulence genes and other important bacterial functions, as well as data on production in MGE systems that oppose adaptive immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Barrangou, R. and Marraffini, L.A., CRISPR-Cas systems: Procaryotes upgrade to adaptive immunity, Mol. Cell, 2014, vol. 54, pp. 234–244. https://doi.org/10.1016/j.molcel.2014.03.011

    Article  CAS  Google Scholar 

  2. Marraffini, L.A., CRISPR-Cas immunity in prokaryotes, Nature, 2015, vol. 526, pp. 55–61. https://doi.org/10.1038/nature15386

    Article  CAS  Google Scholar 

  3. Mohanraju, P., Makarova, K.S., Zetsche, B., Zhang, F., Koonin, E.V., and van der Oost, J., Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems, Science, 2016, vol. 353, p. aad5147. https://doi.org/10.1126/science.aad5147

    Article  CAS  Google Scholar 

  4. Amitai, G. and Sorek, R., CRISPR-Cas adaptation: insights into the mechanism of action, Nat. Rev. Microbiol., 2016, vol. 14, pp. 67–76. https://doi.org/10.1038/nrmicro.2015.14

    Article  CAS  Google Scholar 

  5. Sternberg, S.H., Richter, H., Charpentier, E., and Qimron, U., Adaptation in CRISPR-Cas systems, Mol. Cell, 2016, vol. 61, pp. 797–808. https://doi.org/10.1016/j.molcel.2016.01.030

    Article  CAS  Google Scholar 

  6. Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E., Horvath, P., et al., Evolution and classification of the CRISPR-Cas systems, Nat. Rev. Microbiol., 2011, vol. 9, no. 6, pp. 467–477. https://doi.org/10.1038/nrmicro2577

    Article  CAS  Google Scholar 

  7. Makarova, K.S., Wolf, Y.I., and Koonin, E.V., Classification and nomenclature of CRISPR-Cas systems: where from here?, CRISPR J., 2018, vol. 1, no. 5, pp. 325–326. https://doi.org/10.1089/crispr.2018.0033

    Article  Google Scholar 

  8. Makarova, K.S., Wolf, Y.I., Iranzo, S.A., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J.J., et al., Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants, Nat. Rev. Microbiol., 2020, vol. 18, no. 2, pp. 67–83. https://doi.org/10.1038/s41579-019-0299-x

    Article  CAS  Google Scholar 

  9. Amitai, G. and Sorek, R., CRISPR-Cas adaptation: insight into the mechanism of action, Nat. Rev. Microbiol., 2016, vol. 14, pp. 67–76. https://doi.org/10.1038/nrmicro.2015.14

    Article  CAS  Google Scholar 

  10. Jackson, S.A., McKenzie, R.E., Fagerlund, R.D., Kieper, S.N., Fineran, P.C., and Brouns, S.I., CRISPR-Cas: adapting to change, Science, 2017, vol. 356, p. eaal5056. https://doi.org/10.1126/science.aal5056

  11. Killelea, T. and Bolt, E.L., CRISPR-Cas adaptive immunity and the three Rs, Biosci. Rep., 2017, vol. 37, no. 4, p. BSR20160297. https://doi.org/10.1042/BSR20160297

    Article  CAS  Google Scholar 

  12. Liu, I., Liu, Zh., Ye, Q., Pan, S., Wang, X., Li, Y., et al., Coupling transcriptional activation of CRISPR-Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus, Nucleic Acids Res., 2017, vol. 45, pp. 8978–8992. https://doi.org/10.1093/nar/gkx612

    Article  CAS  Google Scholar 

  13. Koonin, E.V. and Makarova, K.S., Origin and evolution of CRISPR-Cas systems, Philos. Trans. R. Soc. London, Ser. B, 2019, vol. 374, no. 1772, p. 20180087. https://doi.org/10.1098/rstb.20180087

  14. Charpentier, E., Richter, H., van der Oost, J., and White, M.F., Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity, FEMS Microbiol. Rev., 2015, vol. 39, pp. 428–441. https://doi.org/10.1093/femsre/fuv023

    Article  CAS  Google Scholar 

  15. Nishimassu, H. and Nureki, O., Structure and mechanisms of CRISPR RNA-guided effector nucleases, Curr. Opin. Struct. Biol., 2017, vol. 43, pp. 68–78. https://doi.org/10.1016/j.sbi.2016.11.013

    Article  CAS  Google Scholar 

  16. Plagens, A., Richter, H., Charpenter, E., and Randau, L., DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes, FEMS Microbiol. Rev., 2015, vol. 39, pp. 442–463. https://doi.org/10.1093/femsre/fuv019

    Article  CAS  Google Scholar 

  17. Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., et al., An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol., 2015, vol. 13, pp. 722–736. https://doi.org/10.1038/nrmicro3569

    Article  CAS  Google Scholar 

  18. Koonin, E.V. and Makarova, K.S., Mobile genetics elements and evolution of CRISPR-Cas systems: all the way there and back, Genome Biol. Evol., 2017, vol. 9, pp. 2812–2825. https://doi.org/10.1093/gbe/evx192

    Article  CAS  Google Scholar 

  19. Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., et al., Diversity and evolution of class 2 CRISPR-Cas systems, Nat. Rev. Microbiol., 2017, vol. 15, no. 3, pp. 168–182. https://doi.org/10.1038/nrmicro.2016.184

    Article  CAS  Google Scholar 

  20. Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E., et al., Discovery and functional characterization of diverse class 2 CRISPR-Cas systems, Mol. Cell, 2015, vol. 60, pp. 385–397. https://doi.org/10.1016/j.molcel.2015.10.008

    Article  CAS  Google Scholar 

  21. Krupovic, M., Makarova, K.S., Forterre, P., Prangishvili, D., and Koonin, E.V., Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity, BMC Biol., 2014, vol. 19, pp. 12–36. https://doi.org/10.1186/1741-7007-12-36

    Article  CAS  Google Scholar 

  22. Hickman, A.B. and Dyda, F., CRISPR-Cas immunity and mobile DNA: a new superfamily of DNA transposons encoding a Cas1 endonuclease, Mobile DNA, 2014, vol. 5, pp. 23–27. https://www.mobilednajournal.com/content/5/1/23.

    Article  Google Scholar 

  23. Krupovic, M. and Koonin, E.V., Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems, Curr. Opin. Microbiol., 2016, vol. 31, pp. 25–33. https://doi.org/10.1016/j.mib.2016.01.006

    Article  CAS  Google Scholar 

  24. Koonin, E.V. and Krupovic, M., Evolution of adaptive immunity from transposable elements combined with innate immune systems, Nat. Rev. Genet., 2015, vol. 16, pp. 184–192. https://doi.org/10.1038/nrg3859

    Article  CAS  Google Scholar 

  25. Krupovic, M., Beguin, P., and Koonin, E.V., Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery, Curr. Opin. Microbiol., 2017, vol. 38, pp. 36–43. https://doi.org/10.1016/j.mib.2017.04.004

    Article  CAS  Google Scholar 

  26. Hickman, A.B. and Dyda, F., The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications, Nucleic Acids Res., 2015, vol. 43, pp. 10576–10587. https://doi.org/10.1093/nar/gkv1180

    Article  CAS  Google Scholar 

  27. Beguin, P., Charpin, N., Koonin, E.V., Forterre, P., and Krupovic, M., Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems, Nucleic Acids Res., 2016, vol. 44, pp. 10367–10376. https://doi.org/10.1093/nar/gkv821

    Article  CAS  Google Scholar 

  28. Krupovic, M., Shmakov, S., Makarova, K.S., Forterre, P., and Koonin, E.V., Recent mobility of casposons, self-synthesizing transposons at the origin of the CRISPR-Cas immunity, Genome Biol. Evol., 2016, vol. 8, pp. 375–386. https://doi.org/10.1093/gbe/evw006

    Article  CAS  Google Scholar 

  29. Makarova, K.S., Krupovic, M., and Koonin, E.V., Evolution of replicative DNA polymerases in archaea and their contribution to the eucaryotic replication machinery, Front. Microbiol., 2014, vol. 5, pp. 354. https://doi.org/10.3389/fmicb.2014.00354

    Article  Google Scholar 

  30. Krupovic, M. and Koonin, E.V., Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution, Nat. Rev. Microbiol., 2015, vol. 13, pp. 105–115. https://doi.org/10.1038/nrmicro3389

    Article  CAS  Google Scholar 

  31. Yutin, N., Backstrom, D., Ettema, T.J.G., Krupovic, M., and Koonin, V., Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered genomic and metagenomic sequence analysis, Virol. J., 2018, vol. 15, p. 67. https://doi.org/10.1186/s12985-018-0974-y

    Article  CAS  Google Scholar 

  32. Krupovic, M., Makarova, K.S., Forterre, P., and Koonin, E.V., Recent mobility of casposons, self-synthesizing transposons at the origin of the CRISPR-Cas immunity, Genome Biol. Evol., 2018, vol. 8, no. 2, pp. 375–386. https://doi.org/10.1093/gbe/evw006

    Article  CAS  Google Scholar 

  33. Koonin, E.V. and Krupovic, M., A movable defense, Scientist, 2015, vol. 29, no. 1, pp. 46–53.

    Google Scholar 

  34. Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I., and Koonin, E.V., A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action, Biol. Direct, 2006, vol. 1, p. 7. https://doi.org/10.1186/1745-6150-1-7

    Article  CAS  Google Scholar 

  35. Wiedenheft, B., Zhou, K., Jinek, M., Coyle, S.M., Ma, W., and Doudna, J.A. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense, Structure, 2009, vol. 17, pp. 904–912. https://doi.org/10.1016/j.str.2009.03.019

    Article  CAS  Google Scholar 

  36. Nunez, J.K., Kranzusch, P.J., Noeske, J., Wright, A.V., Davies, C.W., and Doudna, J.A., Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity, Nat. Struct. Mol. Biol., 2014, vol. 21, pp. 528–534. https://doi.org/10.1038/nsmb.2820

    Article  CAS  Google Scholar 

  37. Nunez, J.K., Lee, A.S., Engelman, A., and Doudna, J.A., Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity, Nature, 2015, vol. 519, pp. 193–198. https://doi.org/10.1038/nature14237

    Article  CAS  Google Scholar 

  38. Arslan, Z., Hermanns, V., Wurm, R., Wagner, R., and Pul, U., Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system, Nucleic Acids Res., 2014, vol. 42, pp. 7884–7893. https://doi.org/10.1093/nar/gkv510

    Article  CAS  Google Scholar 

  39. Nunez, J.K., Kranzusch, P.J., Noeske, J., Wright, A.V., Davies, C.W., and Doudna, J.A., Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity, Nat. Struct. Mol. Biol., 2014, vol. 21, pp. 528–534. https://doi.org/10.1038/nsmb.2820

    Article  CAS  Google Scholar 

  40. Faure, G., Makarova, K.S., and Koonin, E.V., CRISPR-Cas: complex functional networks and multiple roles beyond adaptive immunity, J. Mol. Biol., 2019, vol. 431, no. 1, pp. 3–20. https://doi.org/10.1016/j.jmb.2018.08.030

    Article  CAS  Google Scholar 

  41. Sampson, T.R. and Weiss, D.S., CRISPR-Cas systems: new players in gene regulation and bacterial physiology, Front. Cell. Infect. Microbiol., 2014, vol. 4, p. 37. https://doi.org/10.3389/fcimb.2014.00037

    Article  CAS  Google Scholar 

  42. Sampson, T.R., Saroj, S.D., Llewellyn, A.C., Tzeng, Y.L., and Weiss, D.S., A CRISPR-Cas system mediates bacterial innate evasion and virulence, Nature, 2013, vol. 497, pp. 254–257. https://doi.org/10.1038/nature12048

    Article  CAS  Google Scholar 

  43. Louwen, R., Staals, R.H., Endtz, H.P., van Baarlen, P., and van der Oost, J., The role of CRISPR-Cas system in virulence of pathogenic bacteria, Microbiol. Mol. Biol. Rev., 2014, vol. 78, pp. 74–88. https://doi.org/10.1128/MMBR.00039-13

    Article  Google Scholar 

  44. Watson, B.N.J., Staals, R.H.J., and Fineran, P.C., CRISPR-Cas-mediated phage resistance enhances horizontal gene transfer by transduction, mBio, 2018, vol. 9, no. 1, p. e02406-17. https://doi.org/10.1128/mBio.02406-17

    Article  CAS  Google Scholar 

  45. Goldberg, G.W., Jiang, W., Bikard, D., and Marraffini, L.A., Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting, Nature, 2014, vol. 514, pp. 633–637. https://doi.org/10.1038/nature13637

    Article  CAS  Google Scholar 

  46. Makarova, K.S., Aravind, L., Grishin, N.V., Rogozin, I.B., and Koonin, E.V., A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis, Nucleic Acids Res., 2002, vol. 30, pp. 482–496. https://doi.org/10.1093/nar/30.2.482

    Article  CAS  Google Scholar 

  47. Killelea, T. and Bolt, E.I., CRISPR-Cas adaptive immunity and the three Rs, Biosci. Rep., 2017, vol. 37, p. BSR20160297. https://doi.org/10.1042/BSR20160297

    Article  CAS  Google Scholar 

  48. Liu, T., Liu, Z., Ye, Q., Pan, S., Wang, X., Li, Y., et al., Coupling transcriptional activation of CRISPR-Cas system and DNA repair genes by Cas3a in Sulfolobus islandicus, Nucleic Acids Res., 2017, vol. 45, pp. 8978–8992. https://doi.org/10.1093/nar/gks612

    Article  CAS  Google Scholar 

  49. Ratner, H.K., Sampson, T.R., and Weiss, D.S., I can see CRISPR now, even when phage are gone: a view on alternative CRISPR-Cas functions from prokaryotic envelope, Curr. Opin. Infect. Dis., 2015, vol. 28, no. 3, pp. 267–274. https://doi.org/10.1097/QCO.0000000000000154

    Article  Google Scholar 

  50. Sampson, T.R., Napier, B.A., Schroeder, M.R., Louwen, R., Zhao, J., Chin, C.Y., et al., A CRISPR-Cas system enhances envelope integrity mediating resistance and inflammasome evasion, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 11163–11168. https://doi.org/10.1073/pnas.1323025111

    Article  CAS  Google Scholar 

  51. Louwen, R., Horst-Kreft, D., De Boer, A.G., Van Der Graaf, L., De Knegt, G., Hamersma, M., et al., A novel link between Compylobacter jejuni bacteriophage defense, virulence and Guillain–Barre syndrome, Eur. J. Clin. Microbiol. Infect. Dis., 2013, vol. 32, pp. 207–226. https://doi.org/10.1007/s10096-012-1733-4

    Article  CAS  Google Scholar 

  52. Perez-Rodriguez, R., Haitjema, C., Huang, Q., Nam, K., Bernardis, S., Ke, A., et al., Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli, Mol. Microbiol., 2011, vol. 79, pp. 584–599. https://doi.org/10.1111/j.1365-2958.2010.07265.x

    Article  CAS  Google Scholar 

  53. Young, J.C., Dill, B.D., Pan, C., Hettich, R.L., Banfield, J.F., Shah, M., et al., Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus, PLoS One, 2012, vol. 7, p. e38077. https://doi.org/10.1371/journal.pone.0038077

    Article  CAS  Google Scholar 

  54. Gunderson, F.F. and Cianciotto, N.P., The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae, mBio, 2013, vol. 4, p. e00074-13. https://doi.org/10.1128/mBio.00074-13

    Article  Google Scholar 

  55. Bourgogne, A., Garsin, D.A., Qin, X., Singh, K.V., Sillanpaa, J., Yerrapragada, S., et al., Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OGIRF, Genome Biol., 2008, vol. 9, p. R110. https://doi.org/10.1186/gb-2008-9-7-r110

    Article  CAS  Google Scholar 

  56. Zegans, M.E., Wagner, J.C., Cady, K.C., Murphy, D.M., Hammond, J.H., and O’Toole, G.A., Interaction between bacteriophage DM53 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa, J. Bacteriol., 2009, vol. 191, pp. 210–219. https://doi.org/10.1128/JB.00797-08

    Article  CAS  Google Scholar 

  57. Palmer, K.L. and Whiteley, M., DMS3-42: the secret to CRISPR-dependent biofilm inhibition in Pseudomonas aeruginosa, J. Bacteriol., 2011, vol. 193, pp. 3431–3432. https://doi.org/10.1128/JB.05066-11

    Article  CAS  Google Scholar 

  58. Makarova, K.S., Anantharaman, S., Aravind, L., and Koonin, E.V., Live virus—free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes, Biol. Direct, 2012, vol. 7, pp. 40–50. https://www.biologyodirect.com/content/7/1/40.

    Article  CAS  Google Scholar 

  59. Makarova, K.S., Wolf, Y.I., and Koonin, E.V., Comparative genomics of defense systems in archaea and bacteria, Nucleic Acids Res., 2013, vol. 41, pp. 4360–4377. https://doi.org/10.1093/nar/gkt157

    Article  CAS  Google Scholar 

  60. Koonin, E.V. and Zhang, F., Coupling immunity and programmed cell suicide in prokaryotes: life or death choices, Bioassays, 2017, vol. 39, pp. 1–9. https://doi.org/10.1002/bies.201600186

    Article  CAS  Google Scholar 

  61. Peters, J.E., Makarova, K.S., Shmakov, S., and Koonin, E.V., Recruitment of CRISPR-Cas systems by Tn7-like transposon, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, pp. 7358–7366. https://doi.org/10.1073/pnas.1709035114

    Article  CAS  Google Scholar 

  62. Seed, K.D., Lazinski, D.W., Calderweed, S.B., and Camilli, A., A bacteriophage encodes its own CRISPR/ Cas adaptive response to evade host innate immunity, Nature, 2013, vol. 494, pp. 489–491. https://doi.org/10.1038/nature11927

    Article  CAS  Google Scholar 

  63. Villion, M. and Moineau, S., Virology: phages hijack a host defense, Nature, 2013, vol. 494, pp. 433–434. https://doi.org/10.1038/494433a

    Article  CAS  Google Scholar 

  64. Pinilla-Redonda, R., Shehreen, S., Marino, N.D., Fagerlund, R.D., Brown, Ch.M., Sorensen, S.J., et al., Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements, Nat. Commun., 2020, vol. 11, p. 5652. https://doi.org/10.1038/s41467-020-19415-3

    Article  CAS  Google Scholar 

  65. Faure, G., Shmakov, S.A., Yan, W.X., Cheng, D.R., Scott, D.A., Peters, J.E., et al., CRISPR-Cas in mobile genetic elements: counter-defense and beyond, Nat. Rev. Microbiol., 2019, vol. 17, no. 8, pp. 513–525. https://doi.org/10.1038/s41579-019-0204-7

    Article  CAS  Google Scholar 

  66. Borges, A.L., Davidson, A.R., and Bondy-Denomy, J., The discovery, mechanisms, and evolutionary impact of anti-CRISPRs, Annu. Rev. Virol., 2018, vol. 4, pp. 32–39. https://doi.org/10.1146/annurev-virology-101416-041616

    Article  CAS  Google Scholar 

  67. Bondy-Denomy, J., Pawluk, A., Maxwell, K.L., and Davidson, A.R., Bacteriophage genes that inactivate the CRISPR-Cas bacterial immune system, Nature, 2013, vol. 493, pp. 429–432. https://doi.org/10.1038/nature11723

    Article  CAS  Google Scholar 

  68. Watters, K.E., Fellmann, C., Bai, H.B., Ren, S.M., and Doudna, J.A., Systematic discovery of natural CRISPR-Cas12a inhibitors, Science, 2018, vol. 362, pp. 236–239. https://doi.org/10.1126/science.aau5138

    Article  CAS  Google Scholar 

  69. Mahendra, C., Christie, K.A., Osuna, B.A., Redondo, R., Kleinstiver, B.P., Bondy-Denomy, J., et al., Broad spectrum anti-CRISPR proteins facilitate horizontal gene transfer, Nat. Microbiol., 2020, vol. 5, pp. 620–629. https://doi.org/10.1038/s41564-020-0726-9

    Article  CAS  Google Scholar 

  70. Trasanidou, D., Geros, A.S., Mohanraji, P., Nieuwenweg, C., Nobrega, F.L., and Staals, R.H.J., Keeping CRISPR in check: diverse mechanisms of phage-encoded anti-CRISPRS, FEMS Microbiol. Lett., 2019, vol. 366, p. fnz098. https://doi.org/10.1093/femsle/fnz098

    Article  CAS  Google Scholar 

  71. Birkholz, N., Fagerlund, R.D., Smith, I.M., Jackson, S.A., and Fineran, P.C., The autoregulator Aca2 mediates anti-CRISPR repression, Nucleic Acids Res., 2019, vol. 47, pp. 9658–9665. https://doi.org/10.1093/nar/gkz721

    Article  CAS  Google Scholar 

  72. Pawluk, A., Staals, R.H.J., Taylor, C., Watson, B.N.J., Saha, S., Fineran, P.C., et al., Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species, Nat. Microbiol. J., 2016, vol. 1, p. 16085. https://doi.org/10.1038/nmicrobiol.2016.85

    Article  CAS  Google Scholar 

  73. Stanley, S.Y., Borges, A.L., Chen, K.-H., Swaney, D.L., Kroyan, N.J., Bondy-Denomy, J., and Davidson, A.R., Anti-CRISPR-associated proteins are crucial repressors of anti-CRISPR transcription, Cell, 2019, vol. 178, pp. 1452–1464. https://doi.org/10.1016/j.cell.2019.07.046

    Article  CAS  Google Scholar 

  74. Davidson, A.R., Lu, W.T., Stanley, S.Y., Wang, J., Mejdani, M., Trost, C.N., et al., Anti-CRISPR inhibitors of CRISPR-Cas systems, Annu. Rev. Biochem., 2020, vol. 89, pp. 309–332. https://doi.org/10.1146/annurev-biochem-011420-111224

    Article  CAS  Google Scholar 

  75. Leon, L.M., Park, A.E., Borges, A.L., Zhang, J.Y., and Bondy-Denomy, J., Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa, Nucleic Acids Res., 2021, vol. 49, no. 4, pp. 2114–2125. https://doi.org/10.1093/nar/gkab006

    Article  CAS  Google Scholar 

  76. Marino, N.D., Pinilla-Redondo, R., Csorgo, B., and Bondy-Denomy, J., Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies, Nat. Methods, 2020, vol. 17, no. 5, pp. 471–479. https://doi.org/10.1038/s41592-020-0771-6

    Article  CAS  Google Scholar 

Download references

Funding

There is no funding for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Ilyina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human beings performed by the author.

Conflict of Interest

The author declares that he has no conflicts of interest.

Additional information

Translated by D. Novikova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyina, T.S. Adaptive Immunity Systems of Bacteria: Association with Self-Synthesizing Transposons, Polyfunctionality. Mol. Genet. Microbiol. Virol. 37, 117–126 (2022). https://doi.org/10.3103/S0891416822030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416822030065

Keywords:

Navigation