Skip to main content
Log in

Computational analysis of synergism in small networks with different logic

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Cell fate decision processes are regulated by networks which contain different molecules and interactions. Different network topologies may exhibit synergistic or antagonistic effects on cellular functions. Here, we analyze six most common small networks with regulatory logic AND or OR, trying to clarify the relationship between network topologies and synergism (or antagonism) related to cell fate decisions. We systematically examine the contribution of both network topologies and regulatory logic to the cell fate synergism by bifurcation and combinatorial perturbation analysis. Initially, under a single set of parameters, the synergism of three types of networks with AND and OR logic is compared. Furthermore, to consider whether these results depend on the choices of parameter values, statistics on the synergism of five hundred parameter sets is performed. It is shown that the results are not sensitive to parameter variations, indicating that the synergy or antagonism mainly depends on the network topologies rather than the choices of parameter values. The results indicate that the topology with “Dual Inhibition” shows good synergism, while the topology with “Dual Promotion” or “Hybrid” shows antagonism. The results presented here may help us to design synergistic networks based on network structure and regulation combinations, which has promising implications for cell fate decisions and drug combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No public data are used. The data we used are generated by randomly chosen values of model parameters in certain ranges.

References

  1. Ralf, J.: Cell fate reprogramming through engineering of native transcription factors. Curr. Opin. Genet. Dev. 52, 109–116 (2018)

    Article  Google Scholar 

  2. Jukam, D., Desplan, C.: Binary fate decisions in differentiating neurons. Curr. Opin. Neurobiol. 29(1), 6–13 (2010)

    Article  Google Scholar 

  3. Chen, X., Hartman, A., Guo, S.: Choosing cell fate through a dynamic cell cycle. Curr. Stem Cell Rep. 1(3), 129–138 (2015)

    Article  Google Scholar 

  4. Yu, X.X., Qiu, W.L., Yang, L., Zhang, Y., He, M.Y., Li, L.C., Xu, C.R.: Defining multistep cell fate decision pathways during pancreatic development at single-cell resolution. EMBO J. 38(8), (2019)

  5. Evan, D., Danielle, T., Christopher, J.: Cell fate decision making through oriented cell division. J. Dev. Biol. 3(4), 129–157 (2015)

    Article  Google Scholar 

  6. Ding, X.M.: Micrornas: regulators of cancer metastasis and epithelial-mesenchymal transition (emt). Chin. J. Cancer 33(3), 140 (2014)

    Article  Google Scholar 

  7. Nieto, M.A.: The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol. 27, 347–376 (2011)

    Article  Google Scholar 

  8. Fischer, N.W., Prodeus, A., Malkin, D., Gariépy, J.: p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle 15(23), 3210–3219 (2016)

    Article  Google Scholar 

  9. Bieging, K.T., Mello, S.S., Attardi, L.D.: Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14(5), 359–370 (2014)

    Article  Google Scholar 

  10. Hat, B., Kochańczyk, M., Bogdał, M.N., Lipniacki, T.: Feedbacks, bifurcations, and cell fate decision-making in the p53 system. Plos Comput. Biol. 12(2), e1004787 (2016)

  11. Tatapudy, S., Aloisio, F., Barber, D., Nystul, T.: Cell fate decisions: emerging roles for metabolic signals and cell morphology. EMBO Rep. 18(12), 2105–2118 (2017)

    Article  Google Scholar 

  12. Frey, U., Kottenberg, E., Kamler, M., Leineweber, K., Manthey, I., Heusch, G., Siffert, W., Peters, J.: Genetic interactions in the β-adrenoceptor g-protein signal transduction pathway and survival after coronary artery bypass grafting: A pilot study. Br. J. Anaesth. 107(6), 869–878 (2011)

  13. Casey, M.J., Stumpf, P.S., MacArthur, B.D.: Theory of cell fate. Wiley Interdiscip. Rev. Syst. Biol. 12(2), (2020)

    Google Scholar 

  14. Maeda, M., Lu, S., Shaulsky, G., Miyazaki, Y., Kuwayama, H., Tanaka, Y., Kuspa, A., Loomis, W.: Periodic signaling controlled by an oscillatory circuit that includes protein kinases erk2 and pka. Science 304(5672), 875–878 (2004)

    Article  ADS  Google Scholar 

  15. Zhang, Y., Liu, H., Yan, F., Zhou, J.: Oscillatory dynamics of p38 activity with transcriptional and translational time delays. Sci. Rep. 7(1), 11495 (2017)

    Article  ADS  Google Scholar 

  16. Zeng, Y.T., Liu, X.F., Yang, W.T., Zheng, P.S.: Rex1 promotes emt-induced cell metastasis by activating the jak2/stat3-signaling pathway by targeting socs1 in cervical cancer. Oncogene 38(43), 1–18 (2019)

    Article  Google Scholar 

  17. Pfeuty, B., Kaneko, K.: The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches. Phys. Biol. 6(4), (2009)

    Article  ADS  Google Scholar 

  18. Yu, P., Nie, Q., Tang, C., Zhang, L.: Nanog induced intermediate state in regulating stem cell differentiation and reprogramming. Bmc Syst. Biol. 12(1), 22 (2018)

    Article  Google Scholar 

  19. Zheng, X., Jin, S., Nie, Q., Zou, X.: scrcmf: Identification of cell subpopulations and transition states from single-cell transcriptomes. IEEE Trans. Biomed. Eng. 67(5), 1418–1428 (2020)

    Article  Google Scholar 

  20. Collens, J., Pusuluri, K., Kelley, A., Knapper, D.E., Shilnikov, A.: Dynamics and bifurcations in multistable 3-cell neural networks. Chaos 30(7), 072101(2020)

  21. Abdelaziz, A., Sarma, A.K.: Effective control and switching of optical multistability in a three-level v-type atomic system. Phys. Rev. A 102(4),(2020)

    Article  ADS  Google Scholar 

  22. Liu, Y., Li, S., Liu, Z., Wang, R.: Bifurcation-based approach reveals synergism and optimal combinatorial perturbation. J. Biol. Phys. 42(3), 399–414 (2016)

    Article  Google Scholar 

  23. Luo, M., Huang, D., Jiao, J., Wang, R.: Detection of synergistic combinatorial perturbations by a bifurcation-based approach. Int. J. Bifurcat. Chaos 31(12), 2150175 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chou, T.C.: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58(3), 621–681 (2006)

    Article  Google Scholar 

  25. Chou, T.C.: Preclinical versus clinical drug combination studies. Leuk. Lymphoma 49(11), 2059–2080 (2008)

    Article  Google Scholar 

  26. Chou, T.C.: Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70(2), 440–6 (2010)

    Article  Google Scholar 

  27. Fitzgerald, J.B., Schoeberl, B., Nielsen, U.B., Sorger, P.K.: Systems biology and combination therapy in the quest for clinical efficacy. Nature Chemical Biol. 2(9), 458 (2006)

    Article  Google Scholar 

  28. Zhang, J., Yuan, Z., Zhou, T.: Synchronization and clustering of synthetic genetic networks: A role for cis-regulatory modules. Phys. Rev. E 79, (2009)

    Article  ADS  Google Scholar 

  29. Goh, K.I., Kahng, B., Cho, K.H.: Sustained oscillations in extended genetic oscillatory systems. Biophys. J. 94(11), 4270–4276 (2008)

    Article  ADS  Google Scholar 

  30. Deritei, D., Rozum, J., Regan, E.R., Albert, R.: A feedback loop of conditionally stable circuits drives the cell cycle from checkpoint to checkpoint. Sci. Rep. 9(1), 1–19 (2019)

    Article  ADS  Google Scholar 

  31. Mitrophanov, A.Y., Groisman, E.A.: Positive feedback in cellular control systems. BioEssays 30(6), 542–555 (2008)

    Article  Google Scholar 

  32. Díaz-López, A., Moreno-Bueno, G., Cano, A.: Role of microrna in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag. Res. 6, 205–216 (2014)

  33. Huang, B., Lu, M., Galbraith, M., Levine, H., Onuchic, J.N., Jia, D.: Decoding the mechanisms underlying cell-fate decision-making during stem cell differentiation by random circuit perturbation. J. R. Soc. Interface 17(169), 20200500 (2020)

    Article  Google Scholar 

  34. Gelens, L., Anderson, G.A., Ferrell, J.E.: Spatial trigger waves: positive feedback gets you a long way. Mol. Biol. Cell 25(22), 3486–3493 (2014)

    Article  Google Scholar 

  35. Katebi, A., Kohar, V., Lu, M.: Random parametric perturbations of gene regulatory circuit uncover state transitions in cell cycle. iScience 23(6), 101150 (2020)

  36. Inoue, D., Sagata, N.: The polo-like kinase plx1 interacts with and inhibits myt1 after fertilization of Xenopus eggs. EMBO J. 24(5), 1057–1067 (2005)

    Article  Google Scholar 

  37. Yan, F., Liu, Z., Liu, H.: Dynamic analysis of the combinatorial regulation involving transcription factors and microRNAs in cell fate decisions. BBA-Proteins Proteomics 1844(1), 248–257 (2014)

    Article  MathSciNet  Google Scholar 

  38. Tokuda, I.T., Okamoto, A., Matsumura, R., Takumi, T., Akashi, M.: Potential contribution of tandem circadian enhancers to nonlinear oscillations in clock gene expression. Mol. Biol. Cell 28(17), 2333–2342 (2017)

    Article  Google Scholar 

  39. Jia, D., Lu, M., Jung, K.H., Park, J.H., Yu, L., Onuchic, J.N., Kaipparettu, B.A., Levine, H.: Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways. Proc. Natl. Acad. Sci. USA 116(9), 3909–3918 (2019)

    Article  ADS  Google Scholar 

  40. García-Gómez, M.L., Ornelas-Ayala, D., Garay-Arroyo, A., Garcia-Ponce, B., Lvarez-Buylla, E.R.: A system-level mechanistic explanation for asymmetric stem cell fates: Arabidopsis thaliana root niche as a study system. Sci. Rep. 10(1), 3525 (2020)

    Article  ADS  Google Scholar 

  41. Hoa, T.T., Tortosa, P., Albano, M., Dubnau, D.: Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol. Microbiol. 43(1), 15–26 (2002)

    Article  Google Scholar 

  42. Guan, Y., Li, Z., Wang, S., Barnes, P.M., Liu, X., Xu, H., Jin, M., Liu, A.P., Yang, Q.: A robust and tunable mitotic oscillator in artificial cells. eLife 7, e33549 (2018)

  43. Lehár, J., Zimmermann, G.R., Krueger, A.S., Molnar, R.A., Ledell, J.T., Heilbut, A.M., Short, G.F., Giusti, L.C., Nolan, G.P., Magid, O.A.: Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 3(1), 80 (2007)

  44. Duan, J., Li, B., Bhakta, M., Xie, S., Zhou, P., Munshi, N.V., Hon, G.C.: Rational reprogramming of cellular states by combinatorial perturbation. Cell Rep. 27(12), 3486–3499 (2019)

    Article  Google Scholar 

  45. Yeo, G.T., Lin, L., Qi, C.Y., Cha, M., Gifford, D.K., Sherwood, R.I.: A multiplexed barcodelet single-cell RNA-seq approach elucidates combinatorial signaling pathways that drive ESC differentiation. Cell Stem Cell 26(6), 938–950 (2020)

    Article  Google Scholar 

  46. Kim, J.R., Yoon, Y., Cho, K.H.: Coupled feedback loops form dynamic motifs of cellular networks. Biophys. J. 94(2), 359–365 (2008)

    Article  ADS  Google Scholar 

  47. Miguel, R.P.J., Agata, O., Gerhard, M., Simona, S., Dominic, V.E., Jim, K.: Zbtb7a is a transducer for the control of promoter accessibility by NF-kappa B and multiple other transcription factors. Plos Biol. 16(5), e2004526 (2018)

  48. Takaoka, K., Hamada, H.: Cell fate decisions and axis determination in the early mouse embryo. Development 139(1), 3–14 (2012)

    Article  Google Scholar 

  49. Loewe, S.: The problem of synergy and antagonism of combined drugs. Arzneimittel-Forschung 3(7), 285–290 (1953)

  50. Huang, B., Lu, M., Jia, D., Ben-Jacob, E., Levine, H., Onuchic, J.N.: Interrogating the topological robustness of gene regulatory circuits by randomization. Plos Comput. Biol. 13(3), e1005456 (2017)

  51. Wang, N., Lefaudeux, D., Mazumder, A., Li, J.J., Hoffmann, A.: Identifying the combinatorial control of signal-dependent transcription factors. Plos Comput. Biol. 17(6), e1009095 (2021)

  52. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29(2), 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (Grant No. 11971297).

Author information

Authors and Affiliations

Authors

Contributions

Menghan Chen: apply statistical and mathematical methods to analyze dynamical models and interpret simulation results; write and edit. Ruiqi Wang: provide ideas; formulate overall research goals and aims; supervise and revise this paper.

Corresponding author

Correspondence to Ruiqi Wang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Informed consent

No individual participants are included in this study and no informed consent needs to be obtained.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 Formulation of logic gates

To identify the dependence of synergy on different logic, we enumerate six small networks, as shown in Fig. 1. Based on the different logic modeling methods (Section 4.2), ordinary differential equations of AND logic and OR logic for these six networks are given.

figure a

OR logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y}{(1+(A/K_b)^H+(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(15)

AND logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y}{(1+(A/K_b)^H*(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(16)
figure b

OR logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x((B/K_a)^H)}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y}{(1+(A/K_b)^H+(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(17)

AND logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x((B/K_a)^H)}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y}{(1+(A/K_b)^H*(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(18)
figure c

OR logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x((B/K_a)^H))}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y((A/K_b)^H+(C/K_c)^H)}{(1+(A/K_b)^H+(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z((B/K_d)^H)}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(19)

AND logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x((B/K_a)^H)}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y((A/K_b)^H*(C/K_c)^H)}{(1+(A/K_b)^H*(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z((B/K_d)^H)}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(20)
figure d

OR logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x((B/K_a)^H)}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y((A/K_b)^H+(C/K_c)^H)}{(1+(A/K_b)^H+(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(21)

AND logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x((B/K_a)^H)}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y((A/K_b)^H*(C/K_c)^H)}{(1+(A/K_b)^H*(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(22)
figure e

OR logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y((C/K_c)^H)}{(1+(A/K_b)^H+(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z((B/K_d)^H)}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(23)

AND logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y((C/K_c)^H)}{(1+(A/K_b)^H*(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z((B/K_d)^H)}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(24)
figure f

OR logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x((B/K_a)^H))}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y((C/K_c)^H)}{(1+(A/K_b)^H+(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z((B/K_d)^H)}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(25)

AND logic

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=\frac{V_x((B/K_a)^H)}{(1+(B/K_a)^H)}-aA+D, &{} \\ \dot{B}=\frac{V_y((C/K_c)^H)}{(1+(A/K_b)^H*(C/K_c)^H)}-bB+E, &{} \\ \dot{C}=\frac{V_z((B/K_d)^H)}{(1+(B/K_d)^H)}-cC+F. \end{array} \right. \end{aligned}$$
(26)

Here, variables A, B,and C represent the concentration of the three proteins at time t. The parameters used for the following calculations are listed in Table 5. All the bifurcation diagrams in the above text are drawn by software Matcont (a subpackage available under Matlab) [52], and all random and statistical processes are completed by Matlab.

Table 5 Parameters are used for simulation and calculation

Appendix B

1.1 Steady-state comparison of OR logic and AND logic

In this section, the steady state of AND and OR logic in Fig. 1a(1) are compared by theoretical calculation. Models (15) and (16) are used to calculate, \(K_b\) is regarded as the bifurcation parameter. Here, \((A^*_{OR}, B^*_{OR}, C^*_{OR})\) and \((A^*_{AND}, B^*_{AND}, C^*_{AND})\) denotes the low-state equilibrium point of the OR logic and AND logic. \((\tilde{A}_{OR}, \tilde{B}_{OR}, \tilde{C}_{OR})\) and \((\tilde{A}_{AND}, \tilde{B}_{AND}, \tilde{C}_{AND})\) denotes the high-state equilibrium point of the OR logic and AND logic.

First, the low steady state of OR logic is given. From Eq. (15), we know that when \(K_b\) \(\rightarrow\)0, the variable B\(\rightarrow\)0, i.e., B is in the low state. The A and C can be approximated

$$\begin{aligned} \begin{array}{ll} A\rightarrow \frac{V_x}{a},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C\rightarrow \frac{V_z}{c}, \end{array} \end{aligned}$$
(27)

Substituting Eq. (27) into the formula B in model (15), we get

$$\begin{aligned} \begin{array}{ll} B^*_{OR}=\frac{V_y}{b\big [1+(\frac{V_x}{a K_b})^2+(\frac{V_z}{c K_c})^2\big ]} \end{array} \end{aligned}$$
(28)

Substituting Eq. (28) into model (15), equilibrium points \(A^*_{OR}\) and \(C^*_{OR}\) can be obtained

$$\begin{aligned} \begin{array}{ll} A^*_{OR}=\frac{V_x}{a\left\{ 1+\left( \frac{V_y}{K_a b\big [1+(\frac{V_x}{a K_b})^2+(\frac{V_z}{c K_c})^2\big ]}\right) ^2\right\} }, \end{array} \end{aligned}$$
(29)
$$\begin{aligned} \begin{array}{ll} C^*_{OR}=\frac{V_z}{c\left\{ 1+\left( \frac{V_y}{K_d b\big [1+(\frac{V_x}{a K_b})^2+(\frac{V_z}{c K_c})^2\big ]}\right) ^2\right\} }. \end{array} \end{aligned}$$
(30)

For AND logic, substituting Eq. (27) into the formula B in model (16), we get

$$\begin{aligned} \begin{array}{ll} B^*_{AND}=\frac{V_y}{b\big [1+(\frac{V_x}{a K_b})^2*(\frac{V_z}{c K_c})^2\big ]} \end{array} \end{aligned}$$
(31)

Substituting Eq. (31) into model (16), equilibrium points \(A^*_{AND}\) and \(C^*_{AND}\) can be obtained

$$\begin{aligned} \begin{array}{ll} A^*_{AND}=\frac{V_x}{a\left\{ 1+\left( \frac{V_y}{K_a b\big [1+(\frac{V_x}{a K_b})^2*(\frac{V_z}{c K_c})^2\big ]}\right) ^2\right\} }, \end{array} \end{aligned}$$
(32)
$$\begin{aligned} \begin{array}{ll} C^*_{AND}=\frac{V_z}{c\left\{ 1+\left( \frac{V_y}{K_d b\big [1+(\frac{V_x}{a K_b})^2*(\frac{V_z}{c K_c})^2\big ]}\right) ^2\right\} }. \end{array} \end{aligned}$$
(33)

When \(K_b\) is in the low state, the values of formulas (28) and (31) can be used to compare the B low steady state of OR logic and AND logic. The parameter values are replaced in Table 5, \(B_{OR}>B_{AND}\) can be obtained, which shows good consistency with Fig. 2.

Next, the high steady state of OR logic and AND logic in Fig. 1a(1) are compared. For OR logic, when \(K_b\rightarrow \infty\), \(B\rightarrow \frac{V_y}{b\left( 1+\left( \frac{C}{K_c}\right) ^2\right) }\). B is substituted into Eq. (15), we can obtain

$$\begin{aligned} \begin{array}{ll} \frac{V_x}{(1+(B/K_a)^2)}-aA=0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \frac{V_z}{(1+(B/K_d)^2)}-cC=0, \end{array} \end{aligned}$$
(34)

The root of A and C can be determined by Eq. (34). Substituting the roots into model (15), we can get

$$\begin{aligned} \begin{array}{ll} \tilde{B}_{OR}=\frac{V_y}{b(1+(A/K_b)^2+(C/K_c)^2)}, \end{array} \end{aligned}$$
(35)

Substituting Eq. (35) into model (15), \(\tilde{A}_{OR}\) and \(\tilde{C}_{OR}\) can be obtained

$$\begin{aligned} \begin{array}{ll} \tilde{A}_{OR}=\frac{V_x}{a\left[ 1+\left( \frac{\tilde{B}_{OR}}{K_a}\right) ^2\right] }, \end{array} \end{aligned}$$
(36)
$$\begin{aligned} \begin{array}{ll} \tilde{C}_{OR}=\frac{V_z}{c\left[ 1+\left( \frac{\tilde{B}_{OR}}{K_d}\right) ^2\right] }, \end{array} \end{aligned}$$
(37)

For AND logic, when \(K_b\rightarrow \infty\), \(B\rightarrow \frac{V_y}{b}\). A and C is obtained

$$\begin{aligned} \begin{array}{ll} A\rightarrow \frac{V_x(K_a b)^2}{a(V_y^2+(K_a b)^2)},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C\rightarrow \frac{V_z(K_d b)^2}{c(V_y^2+(K_d b)^2)}, \end{array} \end{aligned}$$
(38)

Substituting Eq. (38) into the formula B of model (16), we can get

$$\begin{aligned} \begin{array}{ll} \tilde{B}_{AND}=\frac{V_y}{b\left\{ 1+\left( \left( \frac{V_x(b Ka)^2}{a K_b((b K_a)^2+V_y^2)}\right) ^2*\left( \frac{V_z(b K_d)^2}{c K_c((b K_d)^2+V_y^2)}\right) \right) ^2\right\} }, \end{array} \end{aligned}$$
(39)

Substituting Eq. (39) into model (16), equilibrium points \(\tilde{A}_{AND}\) and \(\tilde{C}_{AND}\) are obtained

$$\begin{aligned} \begin{array}{ll} A=\frac{V_x}{a\left\{ 1+\left[ \frac{V_y}{K_a b\left( 1+\left( \frac{V_x(b K_a)^2}{a K_b((b K_a)^2+V_y^2)}\right) ^2*\left( \frac{V_z(b K_d)^2}{c K_c((b K_d)^2+V_y^2)}\right) ^2\right) }\right] ^2\right\} }, \end{array} \end{aligned}$$
(40)
$$\begin{aligned} \begin{array}{ll} C=\frac{V_z}{c\left\{ 1+\left[ \frac{V_y}{K_d b\left( 1+\left( \frac{V_x(b Ka)^2}{a K_b((b K_a)^2+V_y^2)}\right) ^2*\left( \frac{V_z(b K_d)^2}{c K_c((b K_d)^2+V_y^2)}\right) ^2\right) }\right] ^2\right\} }, \end{array} \end{aligned}$$
(41)

When \(K_b\) is in high steady state, Eqs. (35) and (39) can be used to compare the high steady state of OR logic and AND logic. \(K_b\) takes a larger value, and other values are replaced by Table 5, the calculation result is \(B_{AND}>B_{OR}\), which is consistent with Fig. 2.

1.2 Saddle-node bifurcation analysis of OR logic and AND logic

In this section, the bifurcation points of OR logic and AND logic are analyzed. Here, \(K_b\) is regarded as a bifurcation parameter. First, the bifurcation point of OR logic (i.e., model (15)), is calculated. It assumed that \((A^*, B^*, C^*)\) is the equilibrium point of the bifurcation point of \(K_b\).

Let \(\bar{A}=A-A^*\), \(\bar{B}=B-B^*\) and \(\bar{C}=C-C^*\). \(\bar{A}\), \(\bar{B}\) and \(\bar{C}\) are still represented by A, B and C respectively. Therefore, the linear form of the system (15) is expressed as follows

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=-a A-Q B, &{} \\ \dot{B}=-R A-b B-SC, &{} \\ \dot{C}=-TB-c C, &{} \\ \end{array} \right. \end{aligned}$$
(42)

where

$$\begin{aligned}&Q=\frac{2(1/K_a)^2aA^*B^*}{1+(B^*/K_a)^2}, \\&R=\frac{2V_y(1/K_b)^2A^*}{(1+(A^*/K_b)^2+(C^*/K_c)^2)^{2}}, \\&S=\frac{2V_y(1/K_c)^2C^*}{(1+(A^*/K_b)^2+(C^*/K_c)^2)^{2}}, \\&T=\frac{2(1/K_d)^2cB^*C^*}{1+(B^*/K_d)^2}, \end{aligned}$$

where

$$\begin{aligned}&A^*=\frac{V_x}{a(1+(B^*/K_a)^2)}, \\&C^*=\frac{V_z}{c(1+(B^*/K_d)^2)}. \end{aligned}$$

Therefore, the Jacobian matrix of system (15) is

$$J= {\begin{vmatrix}-a &{} -Q &{} 0 \\ -R &{} -b &{} -S \\ 0 &{} -T &{} -c \end{vmatrix}}.$$
(43)

The characteristic equation of the linearized system (15) is

$${\begin{vmatrix} \lambda +a &{} Q &{} 0 \\ R &{} \lambda +b &{} S \\ 0 &{} T &{} \lambda +c \end{vmatrix} =0.}$$
(44)

Then, the exponential polynomial equation is obtained

$$\begin{aligned} \begin{array}{ll} \lambda ^{3}+(a+b+c)\lambda ^{2}+(ab+ac+bc-QR-ST)\lambda +(abc-cQR-aST)=0, \end{array} \end{aligned}$$
(45)

As we all know, when the system produces saddle-node bifurcation, at least one of all eigenvalues is zero. Therefore, substituting \(\lambda =0\) into the polynomial Eq. (45), we can get

$$\begin{aligned} \begin{array}{ll} abc-cQR-aST=0, \end{array} \end{aligned}$$
(46)

The next goal is to solve the bifurcation point \(K_b\) and equilibrium point \(B^*\). From Eqs. (46) and (15), we get

$$\begin{aligned} \left\{ \begin{array}{ll} abc-cQR-aST=0, &{} \\ \frac{V_y}{1+\left( A^*/K_b\right) ^2+\left( C^*/K_c\right) ^2}-bB^*=0. \end{array} \right. \end{aligned}$$
(47)

Then, substituting all the parameters in Table 5 except the control parameter \(K_b\) into Eq. (47). The bifurcation point \(K_b\) and the equilibrium point \(B^*\) can be obtained, i.e., (\(K_b=1.30864\), \(B^*=1.91313\)) and (\(K_b=1.56867\), \(B^*=0.917858\)), which are consistent with the blue curve in Fig. 2a and b.

Next, the bifurcation point of AND logic (i.e., model (16)), is analyzed. Here, it is supposed that \((\widetilde{A}, \widetilde{B}, \widetilde{C})\) is the equilibrium point of the bifurcation point \(K_b\).

Let \(\bar{A}=A-\widetilde{A}\), \(\bar{B}=B-\widetilde{B}\) and \(\bar{C}=C-\widetilde{C}\). \(\bar{A}\), \(\bar{B}\) and \(\bar{C}\) are still represented by A, B, C. Therefore, the linear form of the system (16) is described as follows

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{A}=-a A-M B, &{} \\ \dot{B}=-H A-b B-WC, &{} \\ \dot{C}=-N B-c C, &{} \\ \end{array} \right. \end{aligned}$$
(48)

where

$$\begin{aligned}&M=\frac{2(1/K_a)^2 a\widetilde{B}\widetilde{A}}{1+(\widetilde{B}/K_a)^2}, \\&H=\frac{2V_y(1/K_b)^2(\widetilde{C}/K_c)^2\widetilde{A}}{(1+(\widetilde{A}/K_b)^2*(\widetilde{C}/K_c)^2)^{2}}, \\&W=\frac{2V_y(1/K_c)^2(\widetilde{A}/K_b)^2\widetilde{C}}{(1+(\widetilde{A}/K_b)^2*(\widetilde{C}/K_c)^2)^{2}}, \\&N=\frac{2(1/K_d)^2c\widetilde{B}\widetilde{C}}{1+(\widetilde{B}/K_d)^2}, \end{aligned}$$

where

$$\begin{aligned}&\widetilde{A}=\frac{V_x}{a(1+(\widetilde{B}/K_a)^2)}, \\&\widetilde{C}=\frac{V_z}{c(1+(\widetilde{B}/K_d)^2)}. \end{aligned}$$

Therefore, the Jacobian matrix of system (16) is

$${J= {}\begin{vmatrix} -a &{} -M &{} 0 \\ -H &{} -b &{} -W \\ 0 &{} -N &{} -c \end{vmatrix}.}$$
(49)

The characteristic equation of the linearized system (15) is

$${\begin{vmatrix} \lambda +a &{} M &{} 0 \\ H &{} \lambda +b &{} W \\ 0 &{} N &{} \lambda +c \end{vmatrix} =0.}$$
(50)

Then, the exponential polynomial equation is obtained

$$\begin{aligned} \begin{array}{ll} \lambda ^{3}+(a+b+c)\lambda ^{2}+(ab+ac+bc-MH-WN)\lambda +(abc-cMH-aWN)=0, \end{array} \end{aligned}$$
(51)

Substituting this zero eigenvalue into Eq. (51), the following equation is obtained

$$\begin{aligned} \begin{array}{ll} abc-cMH-aWN=0, \end{array} \end{aligned}$$
(52)

From Eqs. (16) and (52), we get

$$\begin{aligned} \left\{ \begin{array}{ll} abc-cMH-aWN=0, &{} \\ \frac{V_y}{1+\left( \widetilde{A}/K_b\right) ^2*\left( \widetilde{C}/K_c\right) ^2}-b\widetilde{B}=0. \end{array} \right. \end{aligned}$$
(53)

Substituting all the parameters in Table 5 except the control parameter \(K_b\) into Eq. (53). The bifurcation point \(K_b\) and the equilibrium point \(\widetilde{B}\) of the AND logic are obtained, i.e., (\(K_b\)=0.366907, \(\widetilde{B}\)= 2.53285) and (\(K_b\)= 1.44897, \(\widetilde{B}\)= 0.5), which are consistent with red curve in Fig. 2a and b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, R. Computational analysis of synergism in small networks with different logic. J Biol Phys 49, 1–27 (2023). https://doi.org/10.1007/s10867-022-09620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-022-09620-0

Keywords

Navigation