Skip to main content
Log in

Rapid Sinterability of Mechanically Alloyed MgAl/MgO Composite with the Field-Assisted Sintering Technique

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

In this study, a Mg22Al/10MgO composite could be produced at nearly full density by the field-assisted sintering technique at relatively low temperatures and for short time such as 400°C and 15 min under the vacuum-argon atmosphere. The Mg22Al matrix consists of 22 wt % Al, produced by mechanical alloying for 18h and then mixed 2 h with 10 wt % MgO as a reinforcement material. The microstructure of the sample was analysed using an optical microscope, SEM, EDS and XRD. Mechanical properties such as micro hardness, density and compression strength are also obtained. With a compression strength of 314.4 MPa and a hardness value of 137 HV, the composite obtained nearly theoretical density-TD of 0.99. The crystal distortion was measured and calculated by using XRD results. Furthermore, minor amounts of fine intermetallic compounds and oxides such as Al3Mg2, AlMg, γ-Al12Mg17 Al2O3 and MgO were detected. The field-assisted sintering technique, which allows rapid and low-temperature sintering, is used in this study to show that the mechanical properties of the mechanically alloyed microstructure are likely to be preserved during sintering. Furthermore, it demonstrates that when Al and Mg are mechanically alloyed, the alloying pair is a very suitable metal matrix material for composites in which a reinforcing phase, such as MgO, forms an insufficient interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Manna, A. and Bhattacharayya, B., Influence of machining parameters on the machinability of particulate reinforced Al/SiC-MMC, Int. J. Adv. Manuf. Technol., 2005, vol. 25, pp. 850–856. https://doi.org/10.1007/s00170-003-1917-2

    Article  Google Scholar 

  2. Wang, T., Tang, Z., Yang, L., Wu, L., Yan, H., Liu, C., Ma, Y., and Liu, W., A novel technique for preparing Al/Mg alloy by the combined method of powder metallurgy and rolling, Mater. Lett., 2022, vol. 314, p. 131793. https://doi.org/10.1016/j.matlet.2022.131793

    Article  Google Scholar 

  3. Khalajabadi, S.Z., Abdul Kadir, M.R., Izman, S., and Marvibaigi, M., The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nanocomposite manufactured by powder metallurgy method, J. Alloys Compd., 2016, vol. 655, pp. 266–280. https://doi.org/10.1016/j.jallcom.2015.09.107

    Article  Google Scholar 

  4. El-Hadek, M.A. and Kaytbay, S., Al2O3 particle size effect on reinforced copper alloys: An experimental study, Strain, 2009, vol. 45, pp. 506–515. https://doi.org/10.1111/j.1475-1305.2008.00552.x

    Article  Google Scholar 

  5. Diler, E.A., Ghiami, A., and Ipek, R., Effect of high ratio of reinforcement particle size to matrix powder size and volume fraction on microstructure, densification and tribological properties of SiCp reinforced metal matrix composites manufactured via hot pressing method, Int. J. Refract. Met. Hard Mater., 2015, vol. 52, pp. 183–194. https://doi.org/10.1016/j.ijrmhm.2015.06.008

    Article  Google Scholar 

  6. Sankhla, A.M., Patel, K.M., Makhesana, M.A., Giasin, K., Pimenov, D.Y., Wojciechowski, S., and Khanna, N., Effect of mixing method and particle size on hardness and compressive strength of aluminium based metal matrix composite prepared through powder metallurgy route, J. Mater. Res. Technol., 2022, vol. 18, pp. 282–292. https://doi.org/10.1016/j.jmrt.2022.02.094

    Article  Google Scholar 

  7. Prasad, S.V.S., Prasad, S.B., Verma, K., Mishra, R.K., Kumar, V., and Singh, S., The role and significance of magnesium in modern day research—a review, J. Magnesium Alloys, 2021, vol. 10, no. 1, pp. 1–61. https://doi.org/10.1016/j.jma.2021.05.012

    Article  Google Scholar 

  8. Joost, W.J. and Krajewski, P.E., Towards magnesium alloys for high-volume automotive applications, Scr. Mater., 2017, vol. 128, pp. 107–112. https://doi.org/10.1016/j.scriptamat.2016.07.035

    Article  Google Scholar 

  9. Park, K., Park, J., and Kwon, H., Effect of intermetallic compound on the Al-Mg composite materials fabricated by mechanical ball milling and spark plasma sintering, J. Alloys Compd., 2018, vol. 739, pp. 311–318. https://doi.org/10.1016/j.jallcom.2017.12.054

    Article  Google Scholar 

  10. Zhang, Z.Y., Guo, Y.T., Zhao, Y.T., Chen, G., Wu, J.L., and Liu, M.P., Effect of reinforcement spatial distribution on mechanical properties of MgO/ZK60 nanocomposites by powder metallurgy, Mater. Charact., 2019, vol. 150, pp. 229–235. https://doi.org/10.1016/j.matchar.2019.02.024

    Article  Google Scholar 

  11. Gopienko, V.G., Production of Magnesium and Magnesium Alloy Powders, Elsevier, 2009. https://doi.org/10.1016/B978-1-85617-422-0.00015-X

  12. Liao, J., Hotta, M., and Koshi, A., Effect of oxygen content on impact toughness of a fine-grained magnesium alloy, Mater. Lett., 2011, vol. 65, pp. 2995–2999. https://doi.org/10.1016/j.matlet.2011.06.028

    Article  Google Scholar 

  13. Ma, A. and Jiang, J., Bulk ultrafine-grained magnesium alloys by SPD processing: technique, microstructures and properties, in Magnesium Alloys—Design, Processing and Properties, Intechopen, 2011. https://doi.org/10.5772/13157

  14. Rashad, M., Pan, F., Asif, M., She, J., and Ullah, A., Improved mechanical proprieties of “magnesium based composites” with titanium-aluminum hybrids, J. Magnesium Alloys, 2015, vol. 3, pp. 1–9. https://doi.org/10.1016/j.jma.2014.12.010

    Article  Google Scholar 

  15. Azushima, A., Kopp, R., Korhonen, A., Yang, D.Y., Micari, F., Lahoti, G.D. Groche, P., Yanagimoto, J., Tsuji, N., Rosochowski, A., and Yanagida, A., Severe plastic deformation (SPD) processes for metals, CIRP Ann. - Manuf. Technol., 2008, vol. 57, pp. 716–735. https://doi.org/10.1016/j.cirp.2008.09.005

    Article  Google Scholar 

  16. Laska, M. and Kazior, J., Influence of various process parameters on the density of sintered aluminium alloys, Acta Polytech., 2012, vol. 52, pp. 93–95. https://doi.org/10.14311/1604

    Article  Google Scholar 

  17. Nassef, A. and El-Hadek, M., Mechanics of hot pressed aluminum composites, Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 1905–1912. https://doi.org/10.1007/s00170-014-6420-4

    Article  Google Scholar 

  18. Mishra, A., Friction Stir Welding of Dissimilar Metal: A Review, Study on Corrosion Resistance of Friction Stir Welded Similar Joints of Aluminium Alloy, 2018. https://doi.org/10.13140/RG.2.2.25672.62727

  19. Singh, V.P., Patel, S.K., Ranjan, A., and Kuriachen, B., Recent research progress in solid state friction-stir welding of aluminium-magnesium alloys: A critical review, J. Mater. Res. Technol., 2020, vol. 9, pp. 6217–6256. https://doi.org/10.1016/j.jmrt.2020.01.008

    Article  Google Scholar 

  20. Hatch, J.E., Aluminum: Properties and Physical Metallurgy, ASM Int., 1984. https://doi.org/10.31399/asm.hb.v02a.a0006505.

  21. Zhong, W., Hooshmand, M.S., Ghazisaeidi, M., Windl, W., and Zhao, J.C., An integrated experimental and computational study of diffusion and atomic mobility of the aluminum–magnesium system, Acta Mater., 2020, vol. 189, pp. 214–231. https://doi.org/10.1016/j.actamat.2019.12.054

    Article  Google Scholar 

  22. Online Materials Information Resource—MatWeb, 2909, 2002. http://www.matweb.com/.

  23. Magnesia—Magnesium Oxide (MgO) Properties & Applications, AZoM, 2001, pp. 1–4.

  24. Patel, J. and Morsi, K., Effect of mechanical alloying on the microstructure and properties of Al–Sn–Mg alloy, J. Alloys Compd., 2012, vol. 540, pp. 100–106. https://doi.org/10.1016/j.jallcom.2012.04.098

    Article  Google Scholar 

  25. Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci., 2001, vol. 46, pp. 1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  Google Scholar 

  26. Adamiak, M., Mechanical alloying for fabrication of aluminium matrix composite powders with Ti–Al intermetallics reinforcement, J. Achiev. Mater. Manuf. Eng., 2008, vol. 31, pp. 191–196.

    Google Scholar 

  27. Lu, X., Li, J., Chen, X., Ran, C., Wang, Y., Liu, B., Liu, Y., Rashad, M., and Pan, F., Grinding mechanism and mechanical properties of the in-situ synthesized Al2O3 /TiAl composites, Ceram. Int., 2019, vol. 45, no. 1, pp. 2113–12121. https://doi.org/10.1016/j.ceramint.2019.03.111

    Article  Google Scholar 

  28. Torralba, J.M., Improvement of Mechanical and Physical Properties in Powder Metallurgy, Elsevier, 2014. https://doi.org/10.1016/B978-0-08-096532-1.00316-2

  29. Li, X.X., Yang, C., Chen, T., Zhang, L.C., Hayat, M.D., and Cao, P., Influence of powder shape on atomic diffusivity and resultant densification mechanisms during spark plasma sintering, J. Alloys Compd., 2019, vol. 802, pp. 600–608. https://doi.org/10.1016/j.jallcom.2019.06.176

    Article  Google Scholar 

  30. Patra, A., Karak, S.K., and Pal, S., Effects of mechanical alloying on solid solubility, Adv. Eng. Forum, 2016, vol. 15, pp. 17–24. https://doi.org/10.4028/www.scientific.net/aef.15.17

  31. Umeda, J., Kawakami, M., Kondoh, K., Ayman, E.S., and Imai, H., Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials, Mater. Chem. Phys., 2010, vol. 123, pp. 649–657. https://doi.org/10.1016/j.matchemphys.2010.05.033

    Article  Google Scholar 

  32. Habibi, M.K., Paramsothy, M., Hamouda, A.M.S., and Gupta, M., Using integrated hybrid (Al + CNT) reinforcement to simultaneously enhance strength and ductility of magnesium, Compos. Sci. Technol., 2011, vol. 71, pp. 734–741. https://doi.org/10.1016/j.compscitech.2011.01.021

    Article  Google Scholar 

  33. Messerschmidt, U. and Bartsch, M., Generation of dislocations during plastic deformation, Mater. Chem. Phys., 2003, vol. 81, pp. 518–523. https://doi.org/10.1016/S0254-0584(03)00064-6

    Article  Google Scholar 

  34. Sanaty-Zadeh, A., Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect, Mater. Sci. Eng., A, 2012, vol. 531, pp. 112–118. https://doi.org/10.1016/j.msea.2011.10.043

    Article  Google Scholar 

  35. Huo, S.H., Qian, M., Schaffer, G.B., and Crossin, E., Aluminium Powder Metallurgy, Woodhead Publ., 2010. https://doi.org/10.1533/9780857090256.3.655

  36. Nemati, N., Emamy, M., Emami, A.R., and Mashhoodi, M., Hardness and wear properties of Al4.5% Cu/Al3Mg2 nanocomposite prepared by mechanical alloying, Mater. Trans., 2012, vol. 53, pp. 1310–1317. https://doi.org/10.2320/matertrans.M2011377

    Article  Google Scholar 

  37. Morishige, T., Kawaguchi, A., Tsujikawa, M., Hino, M., Hirata, T., and Higashi, K., Dissimilar welding of Al and Mg alloys by FSW, Mater. Trans., 2008, vol. 49, pp. 1129–1131. https://doi.org/10.2320/matertrans.MC200768

    Article  Google Scholar 

  38. Kruzhanov, V. and Arnhold, V., Energy consumption in powder metallurgical manufacturing, Powder Metall., 2012, vol. 55, pp. 14–21. https://doi.org/10.1179/174329012X13318077875722

    Article  Google Scholar 

  39. Azevedo, J.M.C., Cabrera Serrenho, A., and Allwood, J.M., Energy and material efficiency of steel powder metallurgy, Powder Technol., 2018, vol. 328, pp. 329–336. https://doi.org/10.1016/j.powtec.2018.01.009

    Article  Google Scholar 

  40. Lutterotti, L. and Gialanella, S., X-ray diffraction characterization of heavily deformed metallic specimens, Acta Mater., 1998, vol. 46, pp. 101–110. https://doi.org/10.1016/S1359-6454(97)00222-X

    Article  Google Scholar 

  41. Rashad, M., Pan, F., and Asif, M., Room temperature mechanical properties of Mg–Cu–Al alloys synthesized using powder metallurgy method, Mater. Sci. Eng., A, 2015, vol. 644, pp. 129–136. https://doi.org/10.1016/j.msea.2015.07.061

    Article  Google Scholar 

  42. Woo, W., Balogh, L., Ungár, T., Choo, H., and Feng, Z., Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis, Mater. Sci. Eng., A, 2008, vol. 498, pp. 308–313. https://doi.org/10.1016/j.msea.2008.08.007

    Article  Google Scholar 

  43. Mordyuk, B.N., Milman, Y.V., Ie, M.O., Prokopenko, G.I., Silberschmidt, V.V., Danylenko, M.I., and Kotko, A.V., Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel, Surf. Coat. Technol., 2008, vol. 202, pp. 4875–4883. https://doi.org/10.1016/j.surfcoat.2008.04.080

    Article  Google Scholar 

  44. Pigozzi, G., Mukherji, D., Gilles, R., Jencus, P., and Siemers, C., The measurement of internal strain in core-shell Ni3Si(Al)–SiOx nanoparticles, Nanotechnology, 2009, vol. 20, p. 245704. https://doi.org/10.1088/0957-4484/20/24/245704

    Article  Google Scholar 

  45. Fultz, B. and Howe, J., Transmission Electron Microscopy and Diffractometry of Materials, Springer, 2013.

    Book  Google Scholar 

  46. Rud, A.D., Lakhnik, A.M., and Kirian, I.M., Phase evolution in the Al–Mg system during mechanical alloying, Proc. 2017 IEEE 7th Int. Conference “Nanomaterials: Application & Properties (NAP)”, Odessa, 2017. https://doi.org/10.1109/NAP.2017.8190208.

  47. Rud, A.D., Kirian, I.M., Lakhnik, A.M., Kotko, A.V., and Rud, N.D., Synthesis of the metastable Al3Mg phase in Mg–Al–C system by mechanical alloying, Appl. Nanosci., 2022, vol. 12, pp. 741–746. https://doi.org/10.1007/s13204-021-01724-8

    Article  Google Scholar 

  48. Park, K., Park, J., and Kwon, H., Effect of intermetallic compound on the Al-Mg composite materials fabricated by mechanical ball milling and spark plasma sintering, J. Alloys Compd., 2018, vol. 739, pp. 311–318. https://doi.org/10.1016/j.jallcom.2017.12.054

    Article  Google Scholar 

  49. Salleh, E.M., Ramakrishnan, S., and Hussain, Z., Synthesis of biodegradable Mg-Zn alloy by mechanical alloying: effect of milling time, Procedia Chem., 2016, vol. 19, pp. 525–530. https://doi.org/10.1016/j.proche.2016.03.048

    Article  Google Scholar 

  50. Ponhan, K., Tassenberg, K., Weston, D., Nicholls, K.G.M., and Thornton, R., Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg–SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling, Ceram. Int., 2020, vol. 46, pp. 26956–26969. https://doi.org/10.1016/j.ceramint.2020.07.173

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Ege University Planning. Monitoring Coordination of Organizational Development and Directorate of Library and Documentation for their support in editing and proofreading service of this study. We also wish to extend my special thanks to Prof. Alberto Molinari, PhD, Assoc. Prof. Luca Lutterotti; University of Trento The Department of Industrial Engineering and Assoc. Prof. Dr. Turhan Coban Ege University for their for her dedicated support and guidance. In addition, No external funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugce Tekin.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin, T., İpek, R. Rapid Sinterability of Mechanically Alloyed MgAl/MgO Composite with the Field-Assisted Sintering Technique. Russ. J. Non-ferrous Metals 63, 720–730 (2022). https://doi.org/10.3103/S1067821222060165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222060165

Keywords:

Navigation