Skip to main content
Log in

Effect of Zr Content on the Microstructure and Corrosion Resistance of Al–Cu–Mn Alloy

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

In order to improve the overall properties of cast Al–Cu–Mn alloy, the effect of Zr content on the microstructure and corrosion resistance of Al–Cu–Mn alloy was investigated. The microstructures of the alloy were analyzed by scanning electron microscopy and transmission electron microscopy, and the corrosion resistance of the alloy was tested by exfoliation corrosion (EXCO), intergranular corrosion (IGC) and electrochemical corrosion tests. The results show that the corrosion resistance of Al–Cu–Mn alloy with 0.2 wt % Zr is superior to other alloys. Specifically, the EXCO phenomenon of the alloy is lighter, and the rating of EXCO is EA. The IGC depth of the alloy can reach the lower value (56.3 μm). The electrochemical self-corrosion potential (Ecorr), corrosion current (icorr) and corrosion rate (Rcorr) are –0.8046 V, 0.0028 mA m–2 and 0.1558 mm a–1, respectively. The improved corrosion resistance of the Al–Cu–Mn alloy with 0.2 wt % Zr resulted from the formation of the T phase and more uniform dispersive distribution of the Al3Zr phase in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Cheng, W.J., Liu, W., Fan, X.B., and Yuan, S.J., Cooperative enhancements in ductility and strain hardening of a solution-treated Al–Cu–Mn alloy at cryogenic temperatures, Mater. Sci. Eng., A, 2020, vol. 790, pp. 1–14.

    Article  Google Scholar 

  2. Dong, F., Yi, Y.P., Huang, C., and Huang, S.Q., Influence of cryogenic deformation on second-phase particles, grain structure, and mechanical properties of Al–Cu–Mn alloy, J. Alloys Compd., 2020, vol. 827, pp. 154–300.

    Article  Google Scholar 

  3. Wang, J., Lu, Y.L., Zhou, D.S., Su, L.Y., Li, R.X., and Xu, W.T., Influence of homogenization on microstructural response and mechanical property of Al–Cu–Mn alloy, Materials, 2018, vol. 11, no. 6, pp. 1–17.

    Google Scholar 

  4. Kai, X.Z., Tian, K.L., Wang, C.M., Jiao, L., Chen, G., and Zhao, Y.T., Effects of ultrasonic vibration on the microstructure and tensile properties of the nano-ZrB2/2024Al composites synthesized by direct melt reaction, J. Alloys Compd., 2016, vol. 668, pp. 121–127.

    Article  Google Scholar 

  5. Zhao, B., Zhan, Y., and Tang, H., High-temperature properties and microstructural evolution of Al–Cu–Mn–RE (La/Ce) alloy designed through thermodynamic calculation, Mater. Sci. Eng., A, 2019, vol. 758, no. 5, pp. 7–18.

    Article  Google Scholar 

  6. Feng, K., Yang, M., Long, S.L., and Li, B., The Effect of a composite nanostructure on the mechanical properties of a novel Al–Cu–Mn Alloy through multipass cold rolling and aging, Appl. Sci., 2020, vol. 10, no. 22, pp. 1–15.

    Article  Google Scholar 

  7. Chen, Z.W., Chen, P., and Ma, C.Y., Microstructures and mechanical properties of Al–Cu–Mn alloy with La and Sm addition, Rare Met., 2012, vol. 31, no. 4, pp. 332–335.

    Article  Google Scholar 

  8. Zhan, X., Tang, J.G., Li, H.Z., Liang, X.P., Lu, Y.F., Che, Y.X., Tu, W.B., and Zhang, Y.D., Effects of non-isothermal aging on mechanical properties, corrosion behavior and microstructures of Al–Cu–Mg–Si alloy, J. Alloys Compd., 2020, vol. 819, pp. 1–30.

    Article  Google Scholar 

  9. Gao, L., Li, K., Ni, S., Du, Y., Song, M., The growth mechanisms of θ' precipitate phase in an Al–Cu alloy during aging treatment, J. Mater. Sci. Technol., 2020, vol. 61, pp. 25–32.

    Article  Google Scholar 

  10. Meng, F.S., Wang, Z., Zhao, Y.L., Zhang, D.T., and Zhang, W.W., Microstructures and properties evolution of Al–Cu–Mn alloy with addition of vanadium, Metals, 2017, vol. 7, no. 1, pp. 1–12.

    Google Scholar 

  11. Guo, T.B, Zhang, F., Ding, W.W., and Jia, Z., Effect of micro-scale Y addition on the fracture properties of Al–Cu–Mn alloy, Chin. J. Mech. Eng., 2018, vol. 31, no. 6, pp. 217–227.

    Article  Google Scholar 

  12. Du, J.D., Ding, D.Y., Zhang, W.L., Xu, Z., Gao, Y.J., Chen, G.Z., You, X.H., Chen, R.Z., Huang, Y.W., and Tang, J.S., Effect of CeLa addition on the mechanical properties of Al–Cu–Mn–Mg–Fe alloy, Mater. Sci. Technol., 2018, vol. 34, no. 8, pp. 917–925.

    Article  Google Scholar 

  13. Liu, D.Y., Ma, Y.L., Li, J.F., Zhang, R.F., Lwaola, H., and Hirosawa, S., Precipitate microstructures, mechanical properties and corrosion resistance of Al–1.0 wt % Cu–2.5 wt % Li alloys with different micro-alloyed elements addition, Mater. Charact., 2020, vol. 167, pp. 1–13.

    Article  Google Scholar 

  14. Bai, S., Zhou, X.W., Liu, Z.Y., Xia, P., Liu, M., and Zeng, S.M., Effects of Ag variations on the microstructures and mechanical properties of Al–Cu–Mg alloys at elevated temperatures, Mater. Sci. Eng., A, 2014, vol. 611, pp. 69–76.

    Article  Google Scholar 

  15. Ding, J.H., Cui, C.X., Sun, Y.J., Zhao, L.C., and Cui, S., Effect of Mo, Zr, and Y on the high-temperature properties of Al–Cu–Mn alloy, J. Mater. Res., 2019, vol. 34, no. 22, pp. 1–9.

    Article  Google Scholar 

  16. Wu, S.H., Zhang, P., Shao, D., Cheng, P.M., Kuang, J., Wu, K., Zhang, J.Y., Liu, G., and Sun, J., Grain size-dependent Sc microalloying effect on the yield strength-pitting corrosion correlation in Al–Cu alloys, Mater. Sci. Eng., A, 2018, vol. 721, no. 4, pp. 200–214.

    Article  Google Scholar 

  17. Tian, W., Hu, M.N., Chen, X.H., Zhou, H.L., Sun, Y., Lu, Q.Q., and Wan, M.Y., Effect of Ce addition on microstructure, mechanical properties and corrosion behavior of Al–Cu–Mn–Mg–Fe alloy, Mater. Res. Express, 2020, vol. 7, no. 3, pp. 1–13.

    Article  Google Scholar 

  18. Su, R.M., Wang, K.N., Yang, Y.P., Qu, Y.D., and Li, R.D., Effect of Mg content on the microstructure and corrosion properties of Al–Cu–Mn alloy, J. Mater. Eng. Perform., 2020, vol. 29, no. 3, pp. 1622–1629.

    Article  Google Scholar 

  19. Wang, J., Liu, Z.Y., Bai, S., Cao, J., Zhao, J.G., and Zeng, D.P., Combined effect of Ag and Mg additions on localized corrosion behavior of Al–Cu alloys with high Cu content, J. Mater. Eng. Perform., 2020, vol. 29, no. 9, pp. 6108–6117.

    Article  Google Scholar 

  20. Kairy, S.K., Rouxel, B., Dumbre, J., Lamb, J., Langan, T.J., Dorin, T., and Birbilis, N., Simultaneous improvement in corrosion resistance and hardness of a model 2xxx series Al–Cu alloy with the microstructural variation caused by Sc and Zr additions, Corros. Sci., 2019, vol. 158, no. 9, pp. 1–39.

    Article  Google Scholar 

  21. Zhang, F., Guo, T.B., Li, Q., Wang, C., Ding, W.W., and Li, Q.L., Effects of minor Y, Zr and Er addition on microstructure and properties of Al–5Cu–0.4Mn alloy, China Foundry, 2017, vol. 14, no. 6, pp. 461–468.

    Article  Google Scholar 

  22. Li, L., Zhang, Y.D., Esling, C., Jiang, H.X., Zhao, Z.H., Zuo, Y.B., and Cui, J.Z., Crystallographic features of the primary Al3Zr phase in as-cast Al–1.36 wt % Zr alloy, J. Cryst. Growth, 2011, vol. 316, no. 1, pp. 172–176.

    Article  Google Scholar 

  23. Zhao, B., Zhan, Y., and Tang, H., High-temperature properties and microstructural evolution of Al–Cu–Mn–RE (La/Ce) alloy designed through thermodynamic calculation, Mater. Sci. Eng., A, 2019, vol. 758, pp. 7–18.

    Article  Google Scholar 

  24. Belov, N.A. and Alabin, A.N., Energy efficient technology for Al–Cu–Mn–Zr sheet alloys, Mater. Sci. Forum, 2013, vol. 765, pp. 13–17.

    Article  Google Scholar 

  25. Prosviryakov, A.S., Shcherbachev, K.D., and Tabachkova, N.Y., Microstructural characterization of mechanically alloyed Al–Cu–Mn alloy with zirconium, Mater. Sci. Eng., A, 2015, vol. 623, no. 19, pp. 109–113.

    Article  Google Scholar 

  26. Lamb, J., Rouxel, B., Langan, T., and Dorin, T., Novel Al–Cu–Mn–Zr–Sc compositions exhibiting increased mechanical performance after a high-temperature thermal exposure, J. Mater. Eng. Perform., 2020, vol. 29, no. 9, pp. 5672–5684.

    Article  Google Scholar 

  27. Belov, N.A., Korotkova, N.O., Akopyan, T.K., and Pesin, A.M., Phase composition and mechanical properties of Al–1.5% Cu–1.5% Mn–0.35% Zr (Fe, Si) wire alloy, J. Alloys Compd., 2019, vol. 782, pp. 735–746.

    Article  Google Scholar 

  28. Zhu, Q., Zhu, C., Kang, Y., Kong, S.P., Zhao, Z.H., and Zuo, Y.B., Effect of Zr content on the existence form of Zr and as-cast structure of high purity commercial aluminium, Int. J. Mater. Res., 2018, vol. 109, no. 11, pp. 1027–1034.

    Google Scholar 

  29. Cheng, S., Zhao, Y.H., Zhu, Y.T., and Ma, E., Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation, Acta Mater., 2007, vol. 55, no. 17, pp. 5822–5832.

    Article  Google Scholar 

  30. Mallinson, C.F., Yates, P.M., Baker, M.A., Castle, J.E., Harvey, A., and Watts, J.F., The localized corrosion associated with individual second phase particles in AA7075-T6: A study by SEM, EDX, AES, SKPFM and FIB-SEM, Mater. Corros., 2017, vol. 68, no. 7, pp. 748–763.

    Article  Google Scholar 

  31. Wang, Z.X., Chen, P., Li, H., Fang, B.J., Song, R.G., and Zheng, Z.Q., The intergranular corrosion susceptibility of 2024 Al alloy during re-ageing after solution treating and cold-rolling, Corros. Sci., 2017, vol. 114, pp. 156–168.

    Article  Google Scholar 

  32. Niu, P.L., Li, W.Y., Li, N., Xu, Y.X., and Chen, D.L., Exfoliation corrosion of friction stir welded dissimilar 2024-to-7075 aluminum alloys, Mater. Charact., 2019, vol. 147, pp. 93–100.

    Article  Google Scholar 

  33. Song, D., Ma, A.B., Jiang, J.H., Li, P.H., Lu, F.M., and Zhang, L.Y., Significantly changed intergranular corrosion and exfoliation corrosion behavior of the ultra-fine grained Al–5 mass % Cu alloy fabricated by ECAP, Mater. Corros., 2014, vol. 64, no. 11, pp. 1015–1023.

    Article  Google Scholar 

  34. Simsek, I., Investigation of the effect of second phase precipitates on the corrosion and electrical conductivity of 7075 aluminum alloys, Anti-Corros. Methods Mater., 2019, vol. 66, no. 5, pp. 683–688.

    Article  Google Scholar 

  35. Ramgopal, T., Gouma, P.I., and Frankel, G.S., Role of grain-boundary precipitates and solute depleted zone on the intergranular corrosion of aluminum alloy 7150, Corrosion, 2002, vol. 58, no. 8, pp. 687–697.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was financially supported by the Natural Science Foundation of Liaoning Province (2021-MS-235), the program for National Key Research and Development Plan (2017YFB1104000), the National Natural Science Foundation of China (51574167) and the Science and Technology Project of the Education Department of Liaoning Province (LJGD2020010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiming Su.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Su, R., Ma, S. et al. Effect of Zr Content on the Microstructure and Corrosion Resistance of Al–Cu–Mn Alloy. Russ. J. Non-ferrous Metals 63, 681–689 (2022). https://doi.org/10.3103/S1067821222060190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222060190

Keywords:

Navigation