Skip to main content
Log in

Substantiation of Flotation Efficiency under Conditions of Heating of Wetting Films

  • MINERAL PROCESSING OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

In investigation of the aggregative stability of disperse systems by sediment volumetry, a violation of the structure of water in the contact area causes formation of nanobubbles, whose coalescence leads to appearance of hydrophobic attraction forces. A change in the aggregative stability of aqueous dispersions of particles can be interpreted in such a way that ingress of water molecules having a high potential of interaction with molecules of the medium in the interfacial gap between particle surfaces and outflow of water molecules exhibiting high intensity of interaction with a solid surface from the interfacial gap between particle surfaces is difficult. Excess osmotic pressure between hydrophilic surfaces leads to their hydrophilic repulsion, and excess osmotic pressure of the surrounding water (reduced osmotic pressure between surfaces) leads to hydrophobic attraction of the surfaces. To change the result of flotation, it is sufficient to bring a heat flow to a nanoscale-thick liquid layer, within which action of forces of structural origin is localized, determining the stability of wetting films. To increase the temperature in the interfacial gap between the particle and the bubble using the heat of water vapor condensation, as a gas for flotation, a mixture of air and hot water vapor is proposed. The developed flotation method has been tested in flotation of gold ores. The efficient steam flow rate determined from the results of a factorial experiment is 10.7 × 10–3 kg/(s m2), with the xanthate flow rate being 1.74 g/t. In the rough flotation operation, the jet method of constructing a flowsheet is used, which provides for combination of the initial feed and rough concentrate. In comparison with flotation of ores according to a factory scheme, the yield of a concentrate sent to hydrometallurgical processing is smaller by 23.4 rel. %, with the achieved level of gold recovery remaining the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Sidorov, I.A., Development of technology for extracting gold from refractory gold concentrates based on the process of ultrafine grinding, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Irkutsk: Irkutsk National Research Technical Univ., 2018.

  2. Aleksandrova, T.N., Afanasova, A.V., and Aleksandrova, A.V., Microwave treatment to reduce refractoriness of carbonic concentrates, J. Min. Sci., 2020, vol. 56, no. 1, pp. 136–141.

    Article  CAS  Google Scholar 

  3. Matveeva, T.N., Gromova, N.K., and Lantsova, L.B., Analysis of complexing and adsorption properties of dithiocarbamates based on cyclic and aliphatic amines for gold ore flotation, J. Min. Sci., 2020, vol. 56, no. 2, pp. 268–274.

    Article  CAS  Google Scholar 

  4. Gavrilova, T.G. and Kondrat’ev, S.A., Effect of physisorption of collector on activation of flotation of sphalerite, J. Min. Sci.,2020, vol. 56, no. 3, vol. 56, pp. 445–456.

  5. Huaifa, V., Bochkarev, G.R., Rostovtsev, V.I., Veigel’t, Yu.P., and Lu Shoutsi, Intensification of enrichment of polymetallic sulfide ores with high-energy electrons, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2002, no. 5, pp. 96–103.

  6. Chanturiya, V.A., Bunin, I.Zh., Ryazantseva, M.V., Chanturiya, E.L., Khabarova, I.A., Koporulina, E.V., and Anashkina, N.E., Modification of structural, chemical and process properties of rare metal minerals under treatment by high-voltage nanosecond pulses, J. Min. Sci., 2017, vol. 53, no. 4, pp. 718–733.

    Google Scholar 

  7. Algebraistova, N.K., Burdakova, E.A., Romanchenko, A.S., Markova, A.S., Kolotushkin, D.M., and Antonov, A.V., Effect of pulse-discharge treatment on structural and chemical properties and floatability of sulfide minerals, J. Min. Sci., 2017, vol. 53, no. 4, pp. 743–749.

    Article  CAS  Google Scholar 

  8. Albrecht, T.W.S., Addai-Mensah, J., and Fornasiero, D., Critical copper concentration in sphalerite flotation: Effect of temperature and collector, Int. J. Miner. Process., 2016, vol. 146, pp. 15–22.

    Article  CAS  Google Scholar 

  9. Xu, T. and Sun, C.-B., Aerosol flotation of low-grade refractory molybdenum ores, Int. J. Miner., Metall. Mater., 2012, vol. 19, no. 12, pp. 1069–1076.

    Article  Google Scholar 

  10. Evdokimov, S.I. and Gerasimenko, T.E., Combined gravitation-flotation technology for technogenic gold placer concentration., Izv. Non-Ferrous Metall., 2021, vol. 27, no. 4, pp. 4–15.

    Google Scholar 

  11. Evdokimov, S.I. and Gerasimenko, T.E., Scheme and flotation regime for extracting gold from refractory ores, Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 2021, vol. 19, no. 3, pp. 24–36.

  12. Pchelin, V.A., On modeling hydrophobic interactions, Kolloidn. Zh., 1972, vol. 34, no. 5, pp. 783–787.

    CAS  Google Scholar 

  13. Ur’ev, N.B., Physical and chemical dynamics of disperse systems, Usp. Khim., 2007, vol. 73, no. 1, pp. 39–62.

    Google Scholar 

  14. Lu Shou-Tzy, On the role of hydrophobic interaction in flotation and flocculation, Kolloidn. Zh., 1990, vol. 52, no. 5, pp. 858–864.

    Google Scholar 

  15. Churaev, N.V. and Sobolev, V.D., Contribution of structural forces to wetting of quartz surface by electrolyte solutions, Colloid J., 2000, vol. 62, no. 2, pp. 244–250.

    CAS  Google Scholar 

  16. Churaev, N.V. and Sobolev, V.D., Prediction of wetting conditions on the base of disjoining pressure isotherms. Computer calculations, Kolloidn. Zh., 1995, vol. 57, no. 6, pp. 888–896.

    Google Scholar 

  17. Deryagin, B.V. and Churaev, N.V., Smachivayushchie plenki (Wetting Membranes), Moscow: Nauka, 1984.

  18. Smith, A.M., Borkovec, M., and Trefalt, G., Forces between solid surfaces in aqueous electrolyte solutions, Adv. Colloid Interface Sci., 2020, vol. 275, p. 102078.

    Article  CAS  Google Scholar 

  19. Skvarla, J., Hydrophobic interaction between macroscopic and microscopic surfaces. Unification using surface thermodynamics, Adv. Colloid Interface Sci., 2001, vol. 91, no. 3, pp. 335–390.

    Article  CAS  Google Scholar 

  20. Gillies, G., Kappl, M., and Butt, H.-J., Direct measurements of particle-bubble interactions, Adv. Colloid Interface Sci., 2005, vols. 114–115, pp. 165–172.

    Article  Google Scholar 

  21. Xie, L., Wang, J., Lu, Q., Hu, W., Yang, D., Qiao, C., Peng, X., Peng, Q., Wang, T., Sun, W., Lin, Q., Zhang, H., and Zeng, H., Surface interaction mechanisms in mineral flotation. Fundamentals, measurements, and perspectives, Adv. Colloid Interface Sci., 2021, vol. 295, p. 102491.

    Article  CAS  Google Scholar 

  22. Hu, P. and Liang, L., The role of hydrophobic interaction in the heterocoagulation between coal and quartz particles, Miner. Eng., 2020, vol. 154, p. 106421.

    Article  CAS  Google Scholar 

  23. Mishchuk, N.A., The model of hydrophobic attraction in the framework of classical DLVO forces, Adv. Colloid Interface Sci., 2011, vol. 168, nos. 1–2, pp. 149–166.

    Article  CAS  Google Scholar 

  24. Li, Z. and Yoon, R.-H., AFM force measurements between gold and silver surface treated in ethyl xanthate solutions: Effect of applied potentials, Miner. Eng., 2012, vols. 36–38, pp. 126–131.

    Article  Google Scholar 

  25. Wang, J., Yoon, R.-H., and Morris, J., AFM surface force measurements conducted between gold surface treated in xanthate solutions, Int. J. Miner. Process., 2013, vol. 122, pp. 13–21.

    Article  CAS  Google Scholar 

  26. Pan, L. and Yoon, R.-H., Measurement of hydrophobic forces in thin liquid films of water between bubbles and xanthate-treated gold surfaces, Miner. Eng., 2016, vol. 98, pp. 240–250.

    Article  CAS  Google Scholar 

  27. Sedev, R. and Exerova, D., DLVO and non-DLVO surfaces in foam films from amphiphilic block copolymers, Adv. Colloid Interface Sci., 1999, vol. 83, nos. 1–3, pp. 111–136.

    Article  CAS  Google Scholar 

  28. Liu, S., Xie, L., Liu, G., Zhong, H., and Zeng, H., Understanding the hetero-aggregation mechanism among sulfide and oxide mineral particles driven by bifunctional surfactants: Intensification flotation of oxide minerals, Miner. Eng., 2021, vol. 169, p. 106928.

    Article  CAS  Google Scholar 

  29. Krasowska, M. and Malysa, K., Wetting films in attachment of the colliding bubble, Adv. Colloid Interface Sci., 2007, vols. 134–135, pp. 138–150.

    Article  Google Scholar 

  30. Theodorakis, P.E. and Che, Z., Surface nanobubbles: A review, Adv. Colloid Interface Sci., 2019, vol. 272, p. 101995.

    Article  CAS  Google Scholar 

  31. Nguyen, A.V., Nalaskowski, J., Miller, J.D., and Butt, H.-J., Attraction between hydrophobic surfaces studied by atomic force microscopy, Int. J. Miner. Process., 2003, vol. 72, nos. 1–4, pp. 215–225.

    Article  CAS  Google Scholar 

  32. Attard, P., Nanobubbles and the hydrophobic attraction, Adv. Colloid Interface Sci., 2003, vol. 104, nos. 1–3, pp. 75–91.

    Article  CAS  Google Scholar 

  33. Simonsen, A.C., Hansen, P.L., and Klösgen, B., Nanobubbles give evidence of incomplete wetting at a hydrophobic interface, J. Colloid Interface Sci., 2004, no. 1, pp. 291–299.

  34. Hampton, M.A. and Nguyen, A.V., Nanobubbles and the nanobubble bridging capillary force, Adv. Colloid Interface Sci., 2010, vol. 154, nos. 1–2, pp. 30–55.

    Article  CAS  Google Scholar 

  35. Li, Z. and Yoon, R.-H., AFM force measurements between gold and silver surfaces treated in ethyl xanthate solutions: Effect of applied potentials, Miner. Eng., 2012, vols. 36–38, pp. 126–131.

    Article  Google Scholar 

  36. Ejenstam, L., Ovaskainen, L., Rodriguez-Meizoso, I., Wagberg, L., Pan, J., Swerin, A., and Claesson, P.M., The effect of superhydrophobic wetting state on corrosion protection—The AKD example, J. Colloid Interface Sci., 2013, vol. 412, pp. 56–64.

    Article  CAS  Google Scholar 

  37. Zhu, J., Zangari, G., and Reed, M.L., Three-phase contact force equilibrium of liquid drops at hydrophilic and superhydrophobic surfaces, J. Colloid Interface Sci., 2013, vol. 404, pp. 179–182.

    Article  CAS  Google Scholar 

  38. Belyaev, A.V. and Vinogradova, O.I., Effective slip in pressure-driven flow past superhydrophobic stripes, J. Fluid Mech., 2010, vol. 652, pp. 489–499.

    Article  Google Scholar 

  39. Liu, S., Xie, L., Liu, G., Zhong, H., and Zeng, H., Understanding the hetero-aggregation mechanism among sulfide and oxide mineral particles driven by bifunctional surfactants: Intensification flotation of oxide minerals, Miner. Eng., 2021, vol. 169, p. 106928.

    Article  CAS  Google Scholar 

  40. Hu, P. and Liang, L., The role of hydrophobic interaction in the heterocoagulation between coal and quartz particles, Miner. Eng., 2020, vol. 154, p. 106421.

    Article  CAS  Google Scholar 

  41. Huang, K. and Yoon, R.-H., Control of bubble ζ-potentials to improve the kinetics of bubble-particle interactions, Miner. Eng., 2020, vol. 151, p. 106295.

    Article  CAS  Google Scholar 

  42. Gunko, V.M., Turov, V.V., Bogatyrev, V.M., Zarko, V.I., Goncharuk, E.V., Novza, A.A., Chuiko, A.A., Leboda, R., and Turov, A.V., Unusual properties of water at hydrophilic/hydrophobic interfaces, Adv. Colloid Interface Sci., 2005, vol. 118, nos. 1–3, pp. 125–172.

    Article  CAS  Google Scholar 

  43. Miller, J.D., Wang, X., Jin, J., and Shrimali, K., Interfacial water structure and the wetting of mineral surfaces, Int. J. Miner. Process., 2016, vol. 156, pp. 62–68.

    Article  CAS  Google Scholar 

  44. Drost-Hansen, W., Structure of water near solid interfaces, J. Ind. Eng. Chem., 1969, vol. 61, no. 11, pp. 10–47.

    Article  CAS  Google Scholar 

  45. Churaev, N.V., Surface forces and physical chemistry of surface phenomena, Usp. Khim., 2004, vol. 73, no. 1, pp. 26–38.

    Article  Google Scholar 

  46. Boinovich, L. and Emelyanenko, A., Wetting and surface forces, Adv. Colloid Interface Sci., 2011, vol. 165, no. 2, pp. 60–69.

    Article  CAS  Google Scholar 

  47. Xie, L., Wang, J., Lu, Q., Hu, W., Yang, D., Qiao, C., Peng, X., Peng, Q., Wang, T., Su, W., Liu, Q., Zhang, H., and Zeng, H., Surface interaction mechanisms in mineral flotation: Fundamentals, measurements, and perspectives, Adv. Colloid Interface Sci., 2021, vol. 295, p. 102491.

    Article  CAS  Google Scholar 

  48. Smith, A.M., Borkovec, M., and Trefalt, G., Forces between solid surfaces in aqueous electrolyte solutions, Adv. Colloid Interface Sci., 2020, vol. 275, pp. 102078.

    Article  CAS  Google Scholar 

  49. Roldughin, V.I., On the unified mechanism of the action of surface forces of different natures, Colloid J., 2015, vol. 77, no. 2, pp. 202–206.

    Article  CAS  Google Scholar 

  50. Zheng, J.-M., Chin, W.-C., Khijniak, E., and Pollack, G.H., Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact, Adv. Colloid Interface Sci., 2006, vol. 127, no. 1, pp. 19–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Evdokimov or T. E. Gerasimenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Z. Smirnova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimov, S.I., Gerasimenko, T.E. Substantiation of Flotation Efficiency under Conditions of Heating of Wetting Films. Russ. J. Non-ferrous Metals 63, 582–593 (2022). https://doi.org/10.3103/S1067821222060074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222060074

Keywords:

Navigation