Skip to main content
Log in

Comparison of Isotropic and Anisotropic Yield Criteria Models in Quenching Residual Stress of Magnesium Alloys

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Simulation model accuracy of quench induced residual stress in wrought magnesium alloy Mg‒Gd–Y–Zr–Ag–Er is tested by applying both isotropic and anisotropic criteria models in residual stress FEM simulation. Both hexagonal close-packed (HCP) lattice structure and asymmetry are considered in the manufacturing process. The distributions of residual stress in isotropic and anisotropic criteria models differ both in distribution and in value, which is due to stress-strain nonuniformity in extrusion direction (ED) and long transverse direction (LTD). Comparing the experimental and predicted errors of the two models, the anisotropic model improves the prediction accuracy by 8.3% in ED and 4.8% in LTD. Residual stress in LTD is always larger than that in ED by the XRD method, and the average deviation between the XRD method and the hole-drilling method is reduced through electropolishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Jia-Siang, W. and Chih-Chun, H., The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique, Mater. Charact., 2015, vol. 99, pp. 248–253. https://doi.org/10.1016/j.matchar.2014.09.019

    Article  CAS  Google Scholar 

  2. Zengin, H. and Turen, Y., Evolution of microstructure, residual stress, and tensile properties of Mg–Zn–Y–La–Zr magnesium alloy processed by extrusion, Acta Metall. Sin. (Engl. Lett.), 2019, vol. 32, no. 11, pp. 1309–1319. https://doi.org/10.1007/s40195-019-00901-7

  3. Samman, T. and Gottstein, G., Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanism, Mater. Sci. Eng., A, 2008, vol. 488, pp. 406–414. https://doi.org/10.1016/j.msea.2007.11.056

    Article  CAS  Google Scholar 

  4. Zhang, F., Liu, Z., and Wang, Y., The modified temperature term on Johnson–Cook constitutive model of AZ31 magnesium alloy with 0002 texture, J. Magnesium Alloys, 2020, vol. 8, no. 1, pp. 172–183. https://doi.org/10.1016/j.jma.2019.05.013

    Article  CAS  Google Scholar 

  5. Wencai, L. and Beiping, Z., High temperature mechanical behavior of low-pressure sand-cast Mg–Gd–Y–Zr magnesium alloy, J. Magnesium Alloys, 2019, vol. 7, pp. 597–604. https://doi.org/10.1016/j.jma.2019.07.006

    Article  CAS  Google Scholar 

  6. Pan, R., Pirling, T., and Zheng, J., Quantification of thermal residual stresses relaxation in AA7xxx aluminium alloy through cold rolling, J. Mater. Process. Technol., 2019. vol. 264, pp. 454–468. https://doi.org/10.1016/j.jmatprotec.2018.09.034

    Article  CAS  Google Scholar 

  7. Yuxun, Z. and Youping, Y., Influence of temperature dependent properties of aluminum alloy on evolution of plastic strain and residual stress during quenching process, Metals, 2017, vol. 7, no. 6, p. 228. https://doi.org/10.3390/met7060228

    Article  CAS  Google Scholar 

  8. Yuxun, Z. and Youping, Y., Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings, Mater. Sci. Eng., A, 2016, vol. 674, pp. 658–665. https://doi.org/10.1016/j.msea.2016.08.017

    Article  CAS  Google Scholar 

  9. Hai, G. and Yanjie, S., Effect of vibration stress relief on the shape stability of aluminum alloy 7075 thin-walled parts, Metals, 2019, vol. 9, no. 1, p. 27. https://doi.org/10.3390/met9010027

    Article  CAS  Google Scholar 

  10. Citarella, R. and Carlone, P., Hybrid technique to assess the fatigue performance of multiple cracked FSW joint, Eng. Fract. Mech., 2016, vol. 162, pp. 38–50. https://doi.org/10.1016/j.engfracmech.2016.05.005

    Article  Google Scholar 

  11. Hosaka, T., Influence of grain refinement and residual stress on corrosion behavior of AZ31 magnesium alloy processed by ECAP in RPMI-1640 medium, Procedia Eng., 2017, vol. 184, pp. 432–441. https://doi.org/10.1016/j.proeng.2017.04.114

    Article  CAS  Google Scholar 

  12. Hill, R., A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. A, 1948, vol. 193, no. 1033, pp. 281–297. https://doi.org/10.1098/rspa.1948.0045

    Article  CAS  Google Scholar 

  13. Holger, A. and Barlat, F., New convex yield functions for orthotropic metal plasticity, Int. J. Non-Linear Mech., 2013, vol. 51, pp. 97–111. https://doi.org/10.1016/j.ijnonlinmec.2012.12.007

    Article  Google Scholar 

  14. Barlat, F., Linear transformation-based anisotropic yield functions, Int. J. Plast., 2005, vol. 21, no. 5, pp. 1009–1039. https://doi.org/10.1016/j.ijplas.2004.06.004

    Article  CAS  Google Scholar 

  15. Zhang, H. and Diehl, M., A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations, Int. J. Plast., 2016, vol. 80, pp. 111–138. https://doi.org/10.1016/j.ijplas.2016.01.002

    Article  CAS  Google Scholar 

  16. Yoon, J. and Cazacu, O., Constitutive modeling of AZ31 sheet alloy with application to axial crushing, Mater. Sci. Eng., A, 2013, vol. 565, pp. 203–212. https://doi.org/10.1016/j.msea.2012.12.054

    Article  CAS  Google Scholar 

  17. Masoudpanah, S.M. and Mahmudi, R., Effects of rare-earth elements and Ca additions on the microstructure and mechanical properties of AZ31 magnesium alloy processed by ECAP, Mater. Sci. Eng., A, 2009, vol. 565, nos. 1–2, pp. 22–30. https://doi.org/10.1016/j.msea.2009.08.027

    Article  CAS  Google Scholar 

  18. Sheikhani, A., Roumina, R., and Mahmudi, R., Hot deformation behavior of an extruded AZ31 alloy doped with rare-earth elements, J. Alloys Compd., 2021, vol. 852, p. 156961. https://doi.org/10.1016/j.jallcom.2020.156961

    Article  CAS  Google Scholar 

  19. Zhang, Y., Yi, Y., and Huang, S., Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings, Mater. Sci. Eng., A, 2016, vol. 674, pp. 658–665. https://doi.org/10.1016/j.msea.2016.08.017

    Article  CAS  Google Scholar 

  20. Wang, C., Luo, T., and Zhou, J., Effects of solution and quenching treatment on the residual stress in extruded ZK60 magnesium alloy, Mater. Sci. Eng., A, 2018, vol. 722, pp. 14–19. https://doi.org/10.1016/j.msea.2018.02.047

    Article  CAS  Google Scholar 

  21. Schajer, G.S., Practical Residual Stress Measurement Methods, John Wiley and Sons, 2013.

    Book  Google Scholar 

  22. Liu, Y., Mao, P., and Zhang, F., Effect of temperature on the anisotropy of AZ31 magnesium alloy rolling sheet under high strain rate deformation, Philos. Mag., 2018, vol. 98, no. 12, pp. 1068–1086. https://doi.org/10.1080/14786435.2018.1427896

    Article  CAS  Google Scholar 

  23. Adrien, C. and Driver, J.H., Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals, Acta Mater., 2011, vol. 59, no. 5, pp. 1986–1994. https://doi.org/10.1016/j.actamat.2010.11.064

    Article  CAS  Google Scholar 

  24. Wang, C. and Luo, T., Residual stress and precipitation of Mg–5Zn–3.5Sn–1Mn–0.5Ca–0.5Cu alloy with different quenching rates, J. Magnesium Alloys, 2021, vol. 9, no. 2, pp. 604–612. https://doi.org/10.1016/j.jma.2020.02.021

    Article  CAS  Google Scholar 

  25. Yan, J., Pan, Q., and Li, A., Flow behavior of Al–6.2Zn–0.70Mg–0.30Mn–0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models, Trans. Nonferrous Met. Soc. China, 2017, vol. 27, no. 3, pp. 638–647. https://doi.org/10.1016/S1003-6326(17)60071-2

    Article  CAS  Google Scholar 

  26. Zhang, L. and Wang, H., Improved tension/compression asymmetry achieved in high-strength magnesium alloys via compression-extrusion process, Mater. Sci. Eng., A, 2018, vol. 736, pp. 239–247. https://doi.org/10.1016/j.msea.2018.08.110

    Article  CAS  Google Scholar 

  27. Jia, Y. and Bai, Y., Experimental study on the mechanical properties of AZ31B-H24 magnesium alloy sheets under various loading conditions, Int. J. Fract., 2016, vol. 197, pp. 25–48. https://doi.org/10.1007/s10704-015-0057-7

    Article  CAS  Google Scholar 

  28. Xie, Q., Wu, Y., Zhang, T, et al., Effects of quenching cooling rate on residual stress and mechanical properties of a rare-earth wrought magnesium alloy, Materials, 2022, vol. 15, no. 16, p. 5627. https://doi.org/10.3390/ma15165627

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors greatly appreciate the support from the National Natural Science Foundation (no. 51975596) and the Project of State Key Laboratory of High-Performance Complex Manufacturing, Central South University under Award ZZYJKT2020-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxin Wu.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiumin Xie, Wu, Y., Yuan, Z. et al. Comparison of Isotropic and Anisotropic Yield Criteria Models in Quenching Residual Stress of Magnesium Alloys. Russ. J. Non-ferrous Metals 63, 701–708 (2022). https://doi.org/10.3103/S1067821222060141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222060141

Keywords:

Navigation