Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 30, 2022

Anticipatory attractors, functional neurochemistry and “Throw & Catch” mechanisms as illustrations of constructivism

  • Irina Trofimova

    Prof. Irina Trofimova, PhD works as a Clinical Assistant Professor (Adjunct) within the CILab, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada since 1997. She is also a licensed Clinical Psychologist since 1999, Co-Directing a private practice Psychological Services (Toronto-Hamilton) and Co-Directing the Late Life Memory Clinic under Dunnville Hospital, Ontario. She has published 7 books, 70+ articles in the field of neuroscience, clinical, differential, personality, cognitive, evolutional and mathematical psychology, nonlinear dynamics and classifications (taxonomies) of individual differences. Her main current interests are neurochemical biomarkers of consistent behavioural patterns (temperament in healthy people and symptoms of psychopathology in psychiatric disorders). Her detailed CV can be found at: http://www.fhs.mcmaster.ca/cilab/ira/ira.html.

    ORCID logo EMAIL logo

Abstract

This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman’s experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman’s work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry’s evidence points to the “Throw & Catch” (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials (“Throw”) within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The “Throw” works as an internally generated “flashlight” that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual’s individuals’ needs and capacities.


Corresponding author: Irina Trofimova, Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada, E-mail:

About the author

Irina Trofimova

Prof. Irina Trofimova, PhD works as a Clinical Assistant Professor (Adjunct) within the CILab, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada since 1997. She is also a licensed Clinical Psychologist since 1999, Co-Directing a private practice Psychological Services (Toronto-Hamilton) and Co-Directing the Late Life Memory Clinic under Dunnville Hospital, Ontario. She has published 7 books, 70+ articles in the field of neuroscience, clinical, differential, personality, cognitive, evolutional and mathematical psychology, nonlinear dynamics and classifications (taxonomies) of individual differences. Her main current interests are neurochemical biomarkers of consistent behavioural patterns (temperament in healthy people and symptoms of psychopathology in psychiatric disorders). Her detailed CV can be found at: http://www.fhs.mcmaster.ca/cilab/ira/ira.html.

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declare no conflicts of interest regarding this article.

References

Abitz, M., Nielsen, R.D., Jones, E.G., Laursen, H., Graem, N., and Pakkenberg, B. (2007). Excess of neurons in the human newborn mediodorsal thalamus compared with that of the adult. Cerebr. Cortex 17: 2573–2578, https://doi.org/10.1093/cercor/bhl163.Search in Google Scholar PubMed

Agnati, L.F., Leo, G., Zanardi, A., Genedani, S., Rivera, A., Fuxe, K., and Guidolin, D. (2006). Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiol. 187: 329–344, https://doi.org/10.1111/j.1748-1716.2006.01579.x.Search in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Guescini, M., Genedani, S., and Fuxe, K. (2010). Understanding wiring and volume transmission. Brain Res. Rev. 64: 137–159, https://doi.org/10.1016/j.brainresrev.2010.03.003.Search in Google Scholar PubMed

Ahern, T., Krug, S., Carr, A., Murray, E., Fitzpatrick, E., Bengston, L., McCutcheon, J., De Vries, G., and Forger, N. (2013). Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex. J. Comp. Neurol. 521: 2551–2569, https://doi.org/10.1002/cne.23298.Search in Google Scholar PubMed PubMed Central

Alexandrov, Y.I., Sozinov, A.A., Svarnik, O.E., Gorkin, A.G., Kuzina, E.A., and Gavrilov, V.V. (2018). Neuronal bases of systemic organization of behavior. Adv. Neurobiol. 21: 1–33.10.1007/978-3-319-94593-4_1Search in Google Scholar PubMed

Altman, J.M. (1999). Evolving brains. Scientific American Library, NY.Search in Google Scholar

Altman, J. and Bayer, S.A. (1990). Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells. J. Comp. Neurol. 301: 325–342, https://doi.org/10.1002/cne.903010302.Search in Google Scholar PubMed

Aranyosi, I. (2019). Prediction, embodiment, and representation. Behav. Brain Sci. 42: e216, https://doi.org/10.1017/s0140525x19001274.Search in Google Scholar PubMed

Arbib, M.A. (2008). The handbook of brain theory and neural networks. J. R. Soc. Interface 5: 259, https://doi.org/10.1098/rsif.2007.1229.Search in Google Scholar PubMed PubMed Central

Arbib, M.A. and Erdi, P. (2000). Precis of neural organization: structure, function, and dynamics. Behav. Brain Sci. 23: 513–533, https://doi.org/10.1017/s0140525x00003368.Search in Google Scholar PubMed

Aston-Jones, G. and Cohen, J.D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28: 403–450, https://doi.org/10.1146/annurev.neuro.28.061604.135709.Search in Google Scholar PubMed

Ballinger, E.C., Ananth, M., Talmage, D.A., and Role, L.W. (2016). Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91: 1199–1218, https://doi.org/10.1016/j.neuron.2016.09.006.Search in Google Scholar PubMed PubMed Central

Barlow, R.L., Alsio, J., Jupp, B., Rabinovich, R., Shrestha, S., Roberts, A.C., Robbins, T.W., and Dalley, J.W. (2015). Markers of serotonergic function in the orbitofrontal cortex and dorsal raphe nucleus predict individual variation in spatial-discrimination serial reversal learning. Neuropsychopharmacology 40: 1619–1630, https://doi.org/10.1038/npp.2014.335.Search in Google Scholar PubMed PubMed Central

Bartlett, F.C. (2009). Reprinted from the British journal of psychology (1925), 16, 16–27: feeling, imaging and thinking. Br. J. Psychol. 100: 189–198, https://doi.org/10.1348/000712608x336068.Search in Google Scholar

Bartz, J.A., Zaki, J., Bolger, N., and Ochsner, K.N. (2011). Social effects of oxytocin in humans: context and person matter. Trends Cognit. Sci. 15: 301–309.10.1016/j.tics.2011.05.002Search in Google Scholar PubMed

Beane, M. and Marrocco, R. (2004). Norepinephrine and acetylcholine mediation of the components of reflexive attention: implications for attention deficit disorders. Prog. Neurobiol. 74: 167–181, https://doi.org/10.1016/j.pneurobio.2004.09.001.Search in Google Scholar PubMed

Bellfy, L. and Kwapis, J.L. (2020). Molecular mechanisms of reconsolidation-dependent memory updating. Int. J. Mol. Sci. 21: 6580, https://doi.org/10.3390/ijms21186580.Search in Google Scholar PubMed PubMed Central

Bernstein, N. (1947). O postroenii dvijeniy [On the construction of motions]. Gosizdat, Medic-State Publish House, Moscow.Search in Google Scholar

Bernstein, N. (1967). The co-ordination and regulation of movements. Pergamon Press, NY, USA.Search in Google Scholar

Bernstein, N., Latash, M., and Turvey, M. (1996). Dexterity and its development. Taylor & Francis, New York.Search in Google Scholar

Bird, B.M., Geniole, S.N., Procyshyn, T.L., Ortiz, T.L., Carre, J.M., and Watson, N.V. (2019). Effect of exogenous testosterone on cooperation depends on personality and time pressure. Neuropsychopharmacology 44: 538–545, https://doi.org/10.1038/s41386-018-0220-8.Search in Google Scholar PubMed PubMed Central

Blazquez, P.M., Fujii, N., Kojima, J., and Graybiel, A.M. (2002). A network representation of response probability in the striatum. Neuron 33: 973–982, https://doi.org/10.1016/s0896-6273(02)00627-x.Search in Google Scholar PubMed

Bodnar, R.J. (2021). Endogenous opiates and behavior: 2019. Peptides 141: 170547, https://doi.org/10.1016/j.peptides.2021.170547.Search in Google Scholar PubMed

Borroto-Escuela, D.O., Perez De La Mora, M., Manger, P., Narváez, M., Beggiato, S., Crespo-Ramírez, M., Navarro, G., Wydra, K., Díaz-Cabiale, Z., Rivera, A., et al.. (2018). Brain dopamine transmission in health and Parkinson’s disease: modulation of synaptic transmission and plasticity through volume transmission and dopamine heteroreceptors. Front. Synaptic Neurosci. 10: 20, https://doi.org/10.3389/fnsyn.2018.00020.Search in Google Scholar PubMed PubMed Central

Bouret, S. and Sara, S.J. (2005). Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 28: 574–582, https://doi.org/10.1016/j.tins.2005.09.002.Search in Google Scholar PubMed

Braitenberg, V. (2001). Brain size and number of neurons: an exercise in synthetic neuroanatomy. J. Comput. Neurosci. 10: 71–77, https://doi.org/10.1023/a:1008920127052.10.1023/A:1008920127052Search in Google Scholar

Brann, D.W., Lu, Y., Wang, J., Zhang, Q., Thakkar, R., Sareddy, G.R., Pratap, U.P., Tekmal, R.R., and Vadlamudi, R.K. (2022). Brain-derived estrogen and neural function. Neurosci. Biobehav. Rev. 132: 793–817, https://doi.org/10.1016/j.neubiorev.2021.11.014.Search in Google Scholar PubMed PubMed Central

Bressler, S.L. and Kelso, J.A. (2001). Cortical coordination dynamics and cognition. Trends Cognit. Sci. 5: 26–36, https://doi.org/10.1016/s1364-6613(00)01564-3.Search in Google Scholar PubMed

Brimblecombe, K.R. and Cragg, S.J. (2017). The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function. ACS Chem. Neurosci. 8: 235–242, https://doi.org/10.1021/acschemneuro.6b00333.Search in Google Scholar PubMed

Brown, D.A. (2019). Acetylcholine and cholinergic receptors. Brain Neurosci. Adv. 3: 2398212818820506, https://doi.org/10.1177/2398212818820506.Search in Google Scholar PubMed PubMed Central

Bryson, A., Hatch, R.J., Zandt, B.J., Rossert, C., Berkovic, S.F., Reid, C.A., Grayden, D.B., Hill, S.L., and Petrou, S. (2020). GABA-mediated tonic inhibition differentially modulates gain in functional subtypes of cortical interneurons. Proc. Natl. Acad. Sci. U.S.A. 117: 3192–3202, https://doi.org/10.1073/pnas.1906369117.Search in Google Scholar PubMed PubMed Central

Cairns-Smith, A.G. (1982). Genetic takeover: and the mineral origins of life. Cambridge University Press, Cambridge, UK.Search in Google Scholar

Canino, S., Raimo, S., Boccia, M., Di Vita, A., and Palermo, L. (2022). On the embodiment of social cognition skills: the inner and outer body processing differently contributes to the affective and cognitive theory of mind. Brain Sci. 12: 1423, https://doi.org/10.3390/brainsci12111423.Search in Google Scholar PubMed PubMed Central

Carrillo-Garcia, C., Prochnow, S., Simeonova, I.K., Strelau, J., Holzl-Wenig, G., Mandl, C., Unsicker, K., von Bohlen Und Halbach, O., and Ciccolini, F. (2014). Growth/differentiation factor 15 promotes EGFR signalling, and regulates proliferation and migration in the hippocampus of neonatal and young adult mice. Development 141: 773–783, https://doi.org/10.1242/dev.096131.Search in Google Scholar PubMed PubMed Central

Chernyshev, B.V., Lazarev, I.E., and Chernysheva, E.G. (2013). Temperament: an event-related potential study using the oddball paradigm. Psychology Neurosci. 6: 235–245, https://doi.org/10.3922/j.psns.2013.3.01.Search in Google Scholar

Cieri, F., Zhuang, X., Caldwell, J.Z.K., and Cordes, D. (2021). Brain entropy during aging through a free energy principle approach. Front. Hum. Neurosci. 15: 647513, https://doi.org/10.3389/fnhum.2021.647513.Search in Google Scholar PubMed PubMed Central

Courchesne, E. and Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr. Opin. Neurobiol. 15: 225–230, https://uri.org/10.1016/j.conb.2005.03.001.10.1016/j.conb.2005.03.001Search in Google Scholar PubMed

Crespi, B.J. (2016). Oxytocin, testosterone, and human social cognition. Biol. Rev. Camb. Phil. Soc. 91: 390–408, https://doi.org/10.1111/brv.12175.10.1111/brv.12175Search in Google Scholar PubMed

Dalley, J.W., McGaughy, J., O’Connell, M.T., Cardinal, R.N., Levita, L., and Robbins, T.W. (2001). Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J. Neurosci. 21: 4908–4914, https://doi.org/10.1523/jneurosci.21-13-04908.2001.Search in Google Scholar PubMed PubMed Central

de Oliveira Alvares, L. and Do-Monte, F.H. (2021). Understanding the dynamic and destiny of memories. Neurosci. Biobehav. Rev. 125: 592–607, https://doi.org/10.1016/j.neubiorev.2021.03.009.Search in Google Scholar PubMed PubMed Central

de Weerth, C. (2017). Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci. Biobehav. Rev. 83: 458–471, https://doi.org/10.1016/j.neubiorev.2017.09.016.Search in Google Scholar PubMed

Declerck, C.H., Boone, C., and Kiyonari, T. (2010). Oxytocin and cooperation under conditions of uncertainty: the modulating role of incentives and social information. Horm. Behav. 57: 368–374, https://doi.org/10.1016/j.yhbeh.2010.01.006.Search in Google Scholar PubMed

Delay-Goyet, P., Zajac, J.M., Javoy-Agid, F., Agid, Y., and Roques, B.P. (1987). Regional distribution of mu, delta and kappa opioid receptors in human brains from controls and parkinsonian subjects. Brain Res. 414: 8–14.10.1016/0006-8993(87)91321-7Search in Google Scholar PubMed

Descarries, L. and Mechawar, N. (2000). Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog. Brain Res. 125: 27–47.10.1016/S0079-6123(00)25005-XSearch in Google Scholar PubMed

Devoto, P. and Flore, G. (2007). Dopamine and noradrenaline coupling in the cerebral cortex. In: Tseng, K.Y. and Atzori, M. (Eds.), Monoaminergic modulation of cortical excitability. Springer, Boston, MA, pp. 189–196.10.1007/978-0-387-72256-6_12Search in Google Scholar

Devoto, P., Sagheddu, C., Santoni, M., Flore, G., Saba, P., Pistis, M., and Gessa, G.L. (2020). Noradrenergic source of dopamine assessed by microdialysis in the medial prefrontal cortex. Front. Pharmacol. 11: 588160, https://doi.org/10.3389/fphar.2020.588160.Search in Google Scholar PubMed PubMed Central

Dewdney, A.K. (1998). A general theory of the sampling process with applications to the “veil line”. Theor. Popul. Biol. 54: 294–302, https://doi.org/10.1006/tpbi.1997.1370.Search in Google Scholar PubMed

Dinan, T.G. and Cryan, J.F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37: 1369–1378, https://doi.org/10.1016/j.psyneuen.2012.03.007.Search in Google Scholar PubMed

Disney, A.A., Aoki, C., and Hawken, M.J. (2007). Gain modulation by nicotine in macaque v1. Neuron 56: 701–713, https://doi.org/10.1016/j.neuron.2007.09.034.Search in Google Scholar PubMed PubMed Central

Donahue, C.P., Kosik, K.S., and Shors, T.J. (2006). Growth hormone is produced within the hippocampus where it responds to age, sex, and stress. Proc. Natl. Acad. Sci. U.S.A. 103: 6031–6036, https://doi.org/10.1073/pnas.0507776103.Search in Google Scholar PubMed PubMed Central

Dutcher, E.G., Pama, E.A.C., Lynall, M.E., Khan, S., Clatworthy, M.R., Robbins, T.W., Bullmore, E.T., and Dalley, J.W. (2020). Early-life stress and inflammation: a systematic review of a key experimental approach in rodents. Brain Neurosci Adv 4: 2398212820978049, https://doi.org/10.1177/2398212820978049.Search in Google Scholar PubMed PubMed Central

Espana, R.A. and Berridge, C.W. (2006). Organization of noradrenergic efferents to arousal-related basal forebrain structures. J. Comp. Neurol. 496: 668–683, https://doi.org/10.1002/cne.20946.Search in Google Scholar PubMed

Everitt, B.J. and Robbins, T.W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 37: 1946–1954, https://doi.org/10.1016/j.neubiorev.2013.02.010.Search in Google Scholar PubMed

Farzi, A., Fröhlich, E.E., and Holzer, P. (2018). Gut microbiota and the neuroendocrine system. Neurotherapeutics 15: 5–22, https://doi.org/10.1007/s13311-017-0600-5.Search in Google Scholar PubMed PubMed Central

Fink, K.B. and Göthert, M. (2007). 5-HT receptor regulation of neurotransmitter release. Pharmacol. Rev. 59: 360–417, https://doi.org/10.1124/pr.107.07103.Search in Google Scholar PubMed

Fortmann-Roe, S. (2012). Understanding the bias-variance tradeoff. Available at: https://scott.fortmann-roe.com/docs/BiasVariance.html.Search in Google Scholar

Freeman, W.J. (1961). Harmonic oscillation as model for cortical excitability changes with attention in cats. Science 133: 2058–2059, https://doi.org/10.1126/science.133.3470.2058.Search in Google Scholar PubMed

Freeman, W.J. (2000a). Mesoscopic neurodynamics: from neuron to brain. J. Physiol. Paris 94: 303–322, https://doi.org/10.1016/s0928-4257(00)01090-1.Search in Google Scholar PubMed

Freeman, W.J. (2000b). Neurodynamics: an exploration in mesoscopic brain dynamics. Springer-Verlag, London.10.1007/978-1-4471-0371-4Search in Google Scholar

Freeman, W.J. (2001a). Chaotic oscillaions and the genesis of meaning in cerebral cortex. In: Sulis, W. and Trofimova, I. (Eds.), Nonlinear dynamics in life and social sciences. IOS Press, Amsterdam, pp. 44–62.Search in Google Scholar

Freeman, W.J. (2001b). How brains make up their minds. Columbia University Press, NY.Search in Google Scholar

Freeman, W.J. (2007). The place of ‘codes’ in nonlinear neurodynamics. Prog. Brain Res. 165: 447–462.10.1016/S0079-6123(06)65028-0Search in Google Scholar PubMed

Freeman, W. (2012). Neurodynamics: an exploration in mesoscopic brain dynamics. Springer Science & Business Media, London.Search in Google Scholar

Freeman, W. and Vitiello, G. (2006). Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys. Life Rev. 3: 93–118, https://doi.org/10.1016/j.plrev.2006.02.001.Search in Google Scholar

Freeman, M.E., Kanyicska, B., Lerant, A., and Nagy, G. (2000). Prolactin: structure, function, and regulation of secretion. Physiol. Rev. 80: 1523–1631, https://doi.org/10.1152/physrev.2000.80.4.1523.Search in Google Scholar PubMed

Frey, B.N., Rosa-Neto, P., Lubarsky, S., and Diksic, M. (2008). Correlation between serotonin synthesis and 5-HT1A receptor binding in the living human brain: a combined alpha-[11C]MT and [18F]MPPF positron emission tomography study. Neuroimage 42: 850–857, https://doi.org/10.1016/j.neuroimage.2008.05.009.Search in Google Scholar PubMed

Friston, K. and Buzsaki, G. (2016). The functional anatomy of time: what and when in the brain. Trends Cognit. Sci. 20: 500–511, https://doi.org/10.1016/j.tics.2016.05.001.Search in Google Scholar PubMed

Fung, T.C., Olson, C.A., and Hsiao, E.Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20: 145–155, https://doi.org/10.1038/nn.4476.Search in Google Scholar PubMed PubMed Central

Furay, A.R. and Neumaier, J.F. (2011). Opioid receptors: binding that ties. Neuropsychopharmacology 36: 2157–2158, https://doi.org/10.1038/npp.2011.147.Search in Google Scholar PubMed PubMed Central

Fuxe, K. and Borroto-Escuela, D.O. (2016). Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication. Neural. Regen. Res. 11: 1220–1223, https://doi.org/10.4103/1673-5374.189168.Search in Google Scholar PubMed PubMed Central

Fuxe, K., Dahlstrom, A.B., Jonsson, G., Marcellino, D., Guescini, M., Dam, M., Manger, P., and Agnati, L. (2010). The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog. Neurobiol. 90: 82–100, https://doi.org/10.1016/j.pneurobio.2009.10.012.Search in Google Scholar PubMed

Galland, L. (2014). The gut microbiome and the brain. J. Med. Food 17: 1261–1272, https://doi.org/10.1089/jmf.2014.7000.Search in Google Scholar PubMed PubMed Central

Gandal, M.J., Sisti, J., Klook, K., Ortinski, P.I., Leitman, V., Liang, Y., Thieu, T., Anderson, R., Pierce, R.C., Jonak, G., et al.. (2012). GABAB-mediated rescue of altered excitatory-inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction. Transl. Psychiatry 2: e142, https://doi.org/10.1038/tp.2012.69.Search in Google Scholar PubMed PubMed Central

Gil, Z., Connors, B.W., and Amitai, Y. (1997). Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19: 679–686, https://doi.org/10.1016/s0896-6273(00)80380-3.Search in Google Scholar PubMed

Giuliano, C. and Dalley, J.W. (2020). Fine-tuning muscarinic cholinergic transmission in alcohol use disorder. Biol. Psychiatr. 88: 891–892, https://doi.org/10.1016/j.biopsych.2020.10.001.Search in Google Scholar PubMed

Gonzales, K.K. and Smith, Y. (2015). Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann. N. Y. Acad. Sci. 1349: 1–45, https://doi.org/10.1111/nyas.12762.Search in Google Scholar PubMed PubMed Central

Goulas, A., Changeux, J.-P., Wagstyl, K., Amunts, K., Palomero-Gallagher, N., and Hilgetag, C.C. (2021). The natural axis of transmitter receptor distribution in the human cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 118: e2020574118, https://doi.org/10.1073/pnas.2020574118.Search in Google Scholar PubMed PubMed Central

Gould, S.J. (2002). The structure of evolutionary theory. Harvard University Press, Boston, MA, USA.Search in Google Scholar

Granger, A.J., Wallace, M.L., and Sabatini, B.L. (2017). Multi-transmitter neurons in the mammalian central nervous system. Curr. Opin. Neurobiol. 45: 85–91, https://doi.org/10.1016/j.conb.2017.04.007.Search in Google Scholar PubMed PubMed Central

Graybiel, A.M. (2005). The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol. 15: 638–644, https://doi.org/10.1016/j.conb.2005.10.006.Search in Google Scholar PubMed

Graybiel, A.M. and Matsushima, A. (2020). The ups and downs of the striatum: dopamine biases upstate balance of striosomes and matrix. Neuron 108: 1013–1015, https://doi.org/10.1016/j.neuron.2020.11.025.Search in Google Scholar PubMed

Graybiel, A.M. (2016). The striatum and decision-making based on value. In: Buzsaki, G. and Christen, Y. (Eds.), Micro-, meso- and macro-dynamics of the brain. Springer, Cham, CH, pp. 81–84.10.1007/978-3-319-28802-4_6Search in Google Scholar PubMed

Griffiths, R.C. and Tavare, S. (1994). Sampling theory for neutral alleles in a varying environment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 344: 403–410.10.1098/rstb.1994.0079Search in Google Scholar PubMed

Groleau, M., Kang, J.I., Huppe-Gourgues, F., and Vaucher, E. (2015). Distribution and effects of the muscarinic receptor subtypes in the primary visual cortex. Front. Synaptic Neurosci. 7: 10, https://doi.org/10.3389/fnsyn.2015.00010.Search in Google Scholar PubMed PubMed Central

Guidolin, D., Fuxe, K., Neri, G., Nussdorfer, G.G., and Agnati, L.F. (2007). On the role of receptor-receptor interactions and volume transmission in learning and memory. Brain Res. Rev. 55: 119–133, https://doi.org/10.1016/j.brainresrev.2007.02.004.Search in Google Scholar PubMed

Gupta, A., Gullapalli, S., Pan, H., Ramos-Ortolaza, D.L., Hayward, M.D., Low, M.J., Pintar, J.E., Devi, L.A., and Gomes, I. (2021). Regulation of opioid receptors by their endogenous opioid peptides. Cell. Mol. Neurobiol. 41: 1103–1118, https://doi.org/10.1007/s10571-020-01015-w.Search in Google Scholar PubMed PubMed Central

Hamel, E. and Beaudet, A. (1984). Electron microscopic autoradiographic localization of opioid receptors in rat neostriatum. Nature 312: 155–157, https://doi.org/10.1038/312155a0.Search in Google Scholar PubMed

Hampe, C.S., Mitoma, H., and Manto, M. (2019). GABA and glutamate: their transmitter role in the CNS and pancreatic islets. In: GABA And glutamate - new developments in neurotransmission research. IntechOpen, p. 70958.10.5772/intechopen.70958Search in Google Scholar

Hassel, B.R.D. (2006). Glutamate. In: Siegel, G.J., Albers, R.W., Brady, S.T., and Price, D.L. (Eds.). Basic neurochemistry. Elsevier, USA, pp. 267–290.Search in Google Scholar

Hasselmo, M.E. (2006). The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16: 710–715, https://doi.org/10.1016/j.conb.2006.09.002.Search in Google Scholar PubMed PubMed Central

Hasselmo, M.E. and Sarter, M. (2011). Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36: 52–73, https://doi.org/10.1038/npp.2010.104.Search in Google Scholar PubMed PubMed Central

Hauger, R.L., Risbrough, V., Brauns, O., and Dautzenberg, F.M. (2006). Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol. Disord.: Drug Targets 5: 453–479, https://doi.org/10.2174/187152706777950684.Search in Google Scholar PubMed PubMed Central

Hayashibe, M. and Shimoda, S. (2014). Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning. Front. Comput. Neurosci. 8: 21, https://doi.org/10.3389/fncom.2014.00021.Search in Google Scholar PubMed PubMed Central

Hebb, D.O. (2014). Essays on mind. Psychology Press, New York.10.4324/9781315803036Search in Google Scholar

Holt, C.E., Martin, K.C., and Schuman, E.M. (2019). Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26: 557–566, https://doi.org/10.1038/s41594-019-0263-5.Search in Google Scholar PubMed

Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev. 56: 27–78, https://doi.org/10.1016/j.brainresrev.2007.05.004.Search in Google Scholar PubMed PubMed Central

Jog, M.S., Kubota, Y., Connolly, C.I., Hillegaart, V., and Graybiel, A.M. (1999). Building neural representations of habits. Science 286: 1745–1749, https://doi.org/10.1126/science.286.5445.1745.Search in Google Scholar PubMed

Jupp, B., Jones, J.A., and Dalley, J.W. (2020). Modelling differential vulnerability to substance use disorder in rodents: neurobiological mechanisms. Handb. Exp. Pharmacol. 258: 203–230.10.1007/164_2019_300Search in Google Scholar PubMed

Kenakin, T. (2002). Drug efficacy at G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 42: 349–379, https://doi.org/10.1146/annurev.pharmtox.42.091401.113012.Search in Google Scholar PubMed

Khrenov, A.I., Fedorov, A.A., Sirotkin, V.N., Zaraiskaya, I.Y., and Leontovich, T.A. (2006). Two types of projection neurons in human striatum: peculiarities of their somatodendritic structure in ventral and dorsal striatum. Bull. Exp. Biol. Med. 141: 657–661, https://doi.org/10.1007/s10517-006-0245-6.Search in Google Scholar PubMed

Kim, E.J., Pellman, B., and Kim, J.J. (2015). Stress effects on the hippocampus: a critical review. Learn. Mem. 22: 411–416, https://doi.org/10.1101/lm.037291.114.Search in Google Scholar PubMed PubMed Central

Kolk, S.M. and Rakic, P. (2022). Development of prefrontal cortex. Neuropsychopharmacology 47: 41–57, https://doi.org/10.1038/s41386-021-01137-9.Search in Google Scholar PubMed PubMed Central

Kozma, R. (2016). Reflections on a giant of brain science. Cognit. Neurodyn. 10: 457–469, https://doi.org/10.1007/s11571-016-9403-3.Search in Google Scholar PubMed PubMed Central

Kruglikov, I. and Rudy, B. (2008). Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58: 911–924, https://doi.org/10.1016/j.neuron.2008.04.024.Search in Google Scholar PubMed PubMed Central

Lach, G., Schellekens, H., Dinan, T.G., and Cryan, J.F. (2017). Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics 15: 36–59, https://doi.org/10.1007/s13311-017-0585-0.Search in Google Scholar PubMed PubMed Central

Lavezzi, A.M., Ottaviani, G., Terni, L., and Matturri, L. (2006). Histological and biological developmental characterization of the human cerebellar cortex. Int. J. Dev. Neurosci. 24: 365–371, https://doi.org/10.1016/j.ijdevneu.2006.06.002.Search in Google Scholar PubMed

LeDoux, J. (1998). The emotional brain: the mysterious underpinnings of emotional life. Simon & Schuster, New York.Search in Google Scholar

Lee, J.L.C., Nader, K., and Schiller, D. (2017). An update on memory reconsolidation updating. Trends Cognit. Sci. 21: 531–545, https://doi.org/10.1016/j.tics.2017.04.006.Search in Google Scholar PubMed PubMed Central

Lena, C., de Kerchove D’Exaerde, A., Cordero-Erausquin, M., Le Novere, N., del Mar Arroyo-Jimenez, M., and Changeux, J.P. (1999). Diversity and distribution of nicotinic acetylcholine receptors in the locus ceruleus neurons. Proc. Natl. Acad. Sci. U.S.A. 96: 12126–12131, https://doi.org/10.1073/pnas.96.21.12126.Search in Google Scholar PubMed PubMed Central

Liley, D.T.J., Foster, B.L., and Bojak, I. (2012). Co-operative populations of neurons: mean field models of mesoscopic brain activity. In: Le Novère, N. (Ed.), Computational systems neurobiology. Springer, Dordrecht, pp. 317–364.10.1007/978-94-007-3858-4_11Search in Google Scholar

Lindh, B. and Hokfelt, T. (1990). Structural and functional aspects of acetylcholine peptide coexistence in the autonomic nervous system. Prog. Brain Res. 84: 175–191.10.1016/S0079-6123(08)60902-4Search in Google Scholar PubMed

Lucassen, P.J., Heine, V.M., Muller, M.B., van der Beek, E.M., Wiegant, V.M., De Kloet, E.R., Joels, M., Fuchs, E., Swaab, D.F., and Czeh, B. (2006). Stress, depression and hippocampal apoptosis. CNS Neurol. Disord.: Drug Targets 5: 531–546, https://doi.org/10.2174/187152706778559273.Search in Google Scholar PubMed

Maattanen, I., Jokela, M., Hintsa, T., Firtser, S., Kahonen, M., Jula, A., Raitakari, O.T., and Keltikangas-Jarvinen, L. (2013). Testosterone and temperament traits in men: longitudinal analysis. Psychoneuroendocrinology 38: 2243–2248, https://doi.org/10.1016/j.psyneuen.2013.04.009.Search in Google Scholar PubMed

Maejima, T., Masseck, O.A., Mark, M.D., and Herlitze, S. (2013). Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels. Front. Integr. Neurosci. 7: 40, https://doi.org/10.3389/fnint.2013.00040.Search in Google Scholar PubMed PubMed Central

Mains, R.E. and Eipper, B.A. (2006). Peptides. In: Siegel, G.J., Albers, R.W., Brady, S.T., and Price, D.L. (Eds.). Basic neurochemistry, 7th ed. Elsevier, USA, pp. 317–322.Search in Google Scholar

Mansour, A., Khachaturian, H., Lewis, M.E., Akil, H., and Watson, S.J. (1987). Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J. Neurosci. 7: 2445–2464.Search in Google Scholar

Meyer-Lindenberg, A., Domes, G., Kirsch, P., and Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12: 524–538, https://doi.org/10.1038/nrn3044.Search in Google Scholar PubMed

Moiseff, A. and Haresign, T. (2001). Prey detection by bats and owls. Wiley Online Library, Wiley.10.1038/npg.els.0000096Search in Google Scholar

Montoya, E.R., Terburg, D., Bos, P.A., and van Honk, J. (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: a review and theoretical perspective. Motiv. Emot. 36: 65–73, https://doi.org/10.1007/s11031-011-9264-3.Search in Google Scholar PubMed PubMed Central

Nation, J., Trofimova, I., Rand, J., and Sulis, W. (2002). Formal descriptions of developing systems. Kluwer Press, Amsterdam.10.1007/978-94-010-0064-2Search in Google Scholar

Neisser, U. (1978). Anticipations, images, and introspection. Cognition 6: 169–174, https://doi.org/10.1016/0010-0277(78)90021-5.Search in Google Scholar PubMed

Nieuwenhuys, R. (1985). Chemoarchitecture of the brain. Springer-Verlag, Berlin, New York.10.1007/978-3-642-70426-0Search in Google Scholar

Nieuwenhuys, A. and Oudejans, R.R.D. (2011). Anxiety and perceptual-motor performance: toward an integrated model of concepts, mechanisms, and processes. Psychol. Res. 76: 747–759, https://doi.org/10.1007/s00426-011-0384-x.Search in Google Scholar PubMed PubMed Central

Ondicova, K. and Mravec, B. (2010). Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview. Endocr. Regul. 44: 69–75, https://doi.org/10.4149/endo_2010_02_69.Search in Google Scholar PubMed

Op de Macks, Z.A., Gunther Moor, B., Overgaauw, S., Guroglu, B., Dahl, R.E., and Crone, E.A. (2011). Testosterone levels correspond with increased ventral striatum activation in response to monetary rewards in adolescents. Dev. Cognit. Neurosci. 1: 506–516, https://doi.org/10.1016/j.dcn.2011.06.003.Search in Google Scholar PubMed PubMed Central

O’Reilly, R.C. (1998). Six principles for biologically based computational models of cortical cognition. Trends Cognit. Sci. 2: 455–462, https://doi.org/10.1016/s1364-6613(98)01241-8.Search in Google Scholar PubMed

Ostarek, M. and Bottini, R. (2021). Towards strong inference in research on embodiment – possibilities and limitations of causal paradigms. J. Cognit. 4: 5, https://doi.org/10.5334/joc.139.Search in Google Scholar PubMed PubMed Central

Parker, J., Tsagkogeorga, G., Cotton, J.A., Liu, Y., Provero, P., Stupka, E., and Rossiter, S.J. (2013). Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502: 228–231, https://doi.org/10.1038/nature12511.Search in Google Scholar PubMed PubMed Central

Paul, S., Jeon, W.K., Bizon, J.L., and Han, J.-S. (2015). Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment. Front. Aging Neurosci. 7: 43, https://doi.org/10.3389/fnagi.2015.00043.Search in Google Scholar PubMed PubMed Central

Peckys, D. and Landwehrmeyer, G.B. (1999). Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 88: 1093–1135, https://doi.org/10.1016/s0306-4522(98)00251-6.Search in Google Scholar PubMed

Picciotto, M.R., Higley, M.J., and Mineur, Y.S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76: 116–129, https://doi.org/10.1016/j.neuron.2012.08.036.Search in Google Scholar PubMed PubMed Central

Ponzi, D., Zilioli, S., Mehta, P.H., Maslov, A., and Watson, N.V. (2016). Social network centrality and hormones: the interaction of testosterone and cortisol. Psychoneuroendocrinology 68: 6–13, https://doi.org/10.1016/j.psyneuen.2016.02.014.Search in Google Scholar PubMed

Pribram, K.H. (1991). Brain and perception: holonomy and structure in figural processing. Lawrence Erlbaum Associates, Hillsdale, NJ.Search in Google Scholar

Procyshyn, T.L., Watson, N.V., and Crespi, B.J. (2020). Experimental empathy induction promotes oxytocin increases and testosterone decreases. Horm. Behav. 117: 104607, https://doi.org/10.1016/j.yhbeh.2019.104607.Search in Google Scholar PubMed

Purves-Tyson, T.D., Owens, S.J., Double, K.L., Desai, R., Handelsman, D.J., and Weickert, C.S. (2014). Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway. PLoS One 9: e91151, https://doi.org/10.1371/journal.pone.0091151.Search in Google Scholar PubMed PubMed Central

Quartz, S.R. and Sejnowski, T.J. (1997). The neural basis of cognitive development: a constructivist manifesto. Behav. Brain Sci. 20: 537–556, https://doi.org/10.1017/s0140525x97001581.Search in Google Scholar PubMed

Radulovic, J., Jovasevic, V., and Meyer, M.A. (2017). Neurobiological mechanisms of state-dependent learning. Curr. Opin. Neurobiol. 45: 92–98, https://doi.org/10.1016/j.conb.2017.05.013.Search in Google Scholar PubMed PubMed Central

Ren, J., Isakova, A., Friedmann, D., Zeng, J., Grutzner, S.M., Pun, A., Zhao, G.Q., Kolluru, S.S., Wang, R., Lin, R., et al.. (2019). Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. Elife 8: 49424, https://doi.org/10.7554/elife.49424.Search in Google Scholar PubMed PubMed Central

Rho, H.J., Kim, J.H., and Lee, S.H. (2018). Function of selective neuromodulatory projections in the mammalian cerebral cortex: comparison between cholinergic and noradrenergic systems. Front. Neural Circ. 12: 47, https://doi.org/10.3389/fncir.2018.00047.Search in Google Scholar PubMed PubMed Central

Robbins, T. (1997). Arousal systems and attentional processes. Biol. Psychol. 45: 57–71, https://doi.org/10.1016/s0301-0511(96)05222-2.Search in Google Scholar PubMed

Robbins, T. (2010). From behavior to cognition: functions of mesostriatal, mesolimbic, and mesocortical dopamine systems. In: Iversen, L., Iversen, S., Dunnett, S., and Bjorklund, A. (Eds.), Dopamine handbook. Oxford Scholarship Online, Oxford, pp. 203–214.10.1093/acprof:oso/9780195373035.003.0014Search in Google Scholar

Robbins, T. and Dalley, J. (2017). Dissecting impulsivity: brain mechanisms and neuropsychiatric implications. Nebr. Symp. Motiv. 64: 201–226.10.1007/978-3-319-51721-6_7Search in Google Scholar

Robbins, T. and Everitt, B. (1996). Arousal systems and attention. In: Gazzaniga, M. (Ed.), The cognitive neurosciences. MIT Press, Cambridge, MA, pp. 703–720.Search in Google Scholar

Roberts, W.A. (2019). The role of context in animal memory. Learn. Behav. 47: 117–130, https://doi.org/10.3758/s13420-019-00380-x.Search in Google Scholar PubMed

Rudick, C.N., Gibbs, R.B., and Woolley, C.S. (2003). A role for the basal forebrain cholinergic system in estrogen-induced disinhibition of hippocampal pyramidal cells. J. Neurosci. 23: 4479–4490, https://doi.org/10.1523/jneurosci.23-11-04479.2003.Search in Google Scholar

Rusalov, V.M. (1989). Object-related and communicative aspects of human temperament: a new questionnaire of the structure of temperament. Pers. Indiv. Differ. 10: 817–827, https://doi.org/10.1016/0191-8869(89)90017-2.Search in Google Scholar

Rusalov, V.M. (2018). Functional systems theory and the activity-specific approach in psychological taxonomies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373: 20170166, https://doi.org/10.1098/rstb.2017.0166.Search in Google Scholar PubMed PubMed Central

Rusalov, V.M., Rusalova, M.N., and Strel’nikova, E.V. (2004). The association of EEG parameters observed in task performance with dominance of motivation of goal attainment. Hum. Physiol. 30: 262–267, https://doi.org/10.1023/b:hump.0000029170.75420.c9.10.1023/B:HUMP.0000029170.75420.c9Search in Google Scholar

Russell, J.K., Jones, C.K., and Newhouse, P.A. (2019). The role of estrogen in brain and cognitive aging. Neurotherapeutics 16: 649–665, https://doi.org/10.1007/s13311-019-00766-9.Search in Google Scholar PubMed PubMed Central

Sara, S.J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10: 211–223, https://doi.org/10.1038/nrn2573.Search in Google Scholar PubMed

Sarter, M., Hasselmo, M.E., Bruno, J.P., and Givens, B. (2005). Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Rev. 48: 98–111, https://doi.org/10.1016/j.brainresrev.2004.08.006.Search in Google Scholar PubMed

Sarter, M., Parikh, V., and Howe, W.M. (2009). Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat. Rev. Neurosci. 10: 383–390, https://doi.org/10.1038/nrn2635.Search in Google Scholar PubMed PubMed Central

Schmidt, M., Frings, C., and Tempel, T. (2021). Context-dependent memory of motor sequences. J. Cognit. 4: 1487–1498, https://doi.org/10.5334/joc.152.Search in Google Scholar PubMed PubMed Central

Sharif, N.A. and Hughes, J. (1989). Discrete mapping of brain Mu and delta opioid receptors using selective peptides: quantitative autoradiography, species differences and comparison with kappa receptors. Peptides 10: 499–522, https://doi.org/10.1016/0196-9781(89)90135-6.Search in Google Scholar PubMed

Siegel, G.J., Albers, R.W., Brady, S.T., and Price, D.L. (2006). Basic neurochemistry. Elsevier, USA.Search in Google Scholar

Sinclair, D., Purves-Tyson, T.D., Allen, K.M., and Weickert, C.S. (2014). Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology 231: 1581–1599, https://doi.org/10.1007/s00213-013-3415-z.Search in Google Scholar PubMed PubMed Central

Smith, K.S. and Graybiel, A.M. (2016). Habit formation coincides with shifts in reinforcement representations in the sensorimotor striatum. J. Neurophysiol. 115: 1487–1498, https://doi.org/10.1152/jn.00925.2015.Search in Google Scholar PubMed PubMed Central

Solso, S., Xu, R., Proudfoot, J., Hagler, D.J., Campbell, K., Venkatraman, V., Carter Barnes, C., Ahrens-Barbeau, C., Pierce, K., Dale, A., et al.. (2016). Diffusion tensor imaging provides evidence of possible axonal overconnectivity in frontal lobes in autism spectrum disorder toddlers. Biol. Psychiatr. 79: 676–684, https://doi.org/10.1016/j.biopsych.2015.06.029.Search in Google Scholar PubMed PubMed Central

Stark, E. and Abeles, M. (2007). Predicting movement from multiunit activity. J. Neurosci. 27: 8387–8394, https://doi.org/10.1523/jneurosci.1321-07.2007.Search in Google Scholar PubMed PubMed Central

Sulis, W. (2018). Assessing the continuum between temperament and affective illness: psychiatric and mathematical perspectives. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, https://doi.org/10.1098/rstb.2017.0168.Search in Google Scholar PubMed PubMed Central

Sulis, W. and Combs, A. (1996). Nonlinear dynamics in human behavior. World Scientific, Singapore.10.1142/3173Search in Google Scholar

Sulis, W. and Trofimova, I. (2001). Nonlinear dynamics in the life and social sciences. IOS Press, Amsterdam.Search in Google Scholar

Szabadi, E. (2013). Functional neuroanatomy of the central noradrenergic system. J. Psychopharmacol. 27: 659–693, https://doi.org/10.1177/0269881113490326.Search in Google Scholar PubMed

Tau, G.Z. and Peterson, B.S. (2010). Normal development of brain circuits. Neuropsychopharmacology 35: 147–168, https://doi.org/10.1038/npp.2009.115.Search in Google Scholar PubMed PubMed Central

Thomas, S.A., Jamel, S., Pariante, C.M., and Mason, B.L. (2010). Central nervous system (CNS) delivery of glucocorticoids is fine-tuned by saturable transporters at the blood-CNS barriers and nonbarrier regions. Endocrinology 151: 5294–5305, https://doi.org/10.1210/en.2010-0554.Search in Google Scholar PubMed PubMed Central

Trofimova, I. (2012). Who is in charge of Science: men view “time” as more fixed, “reality” as less real, and “order” as less ordered. Cognit. Syst. Res. 15-16: 50–56, https://doi.org/10.1016/j.cogsys.2011.07.001.Search in Google Scholar

Trofimova, I. (2013). Understanding misunderstanding: a study of sex differences in meaning attribution. Psychol. Res. 77: 748–760, https://doi.org/10.1007/s00426-012-0462-8.Search in Google Scholar PubMed

Trofimova, I. (2014). Observer bias: an interaction of temperament traits with biases in the semantic perception of lexical material. PLoS One 9: e85677, https://doi.org/10.1371/journal.pone.0085677.Search in Google Scholar PubMed PubMed Central

Trofimova, I. (2015). Do psychological sex differences reflect evolutionary bisexual partitioning? Am. J. Psychol. 128: 485–514, https://doi.org/10.5406/amerjpsyc.128.4.0485.Search in Google Scholar PubMed

Trofimova, I. (2016a). The interlocking between functional aspects of activities and a neurochemical model of adult temperament. In: Arnold, M.C. (Ed.), Temperaments: individual differences, social and environmental influences and impact on quality of life. Nova Science Publishers, New York, NY, pp. 77–147.Search in Google Scholar

Trofimova, I. (2016b). Phenomena of functional differentiation and fractal functionality. Int. J. Des. Nat. Ecodyn. 11: 508–521, https://doi.org/10.2495/dne-v11-n4-508-521.Search in Google Scholar

Trofimova, I. (2017). Functional constructivism: in search of formal descriptors. Nonlinear Dynam. Psychol. Life Sci. 21: 441–474.Search in Google Scholar

Trofimova, I. (2018). Functionality versus dimensionality in psychological taxonomies, and a puzzle of emotional valence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, https://doi.org/10.1098/rstb.2017.0167.Search in Google Scholar PubMed PubMed Central

Trofimova, I. (2019). An overlap between mental abilities and temperament traits. In: McFarland, D. (Ed.), General and specific mental abilities. Cambridge Scholars Publishing, Cambridge, UK, pp. 77–114.Search in Google Scholar

Trofimova, I. (2021a). Contingent tunes of neurochemical ensembles in the norm and pathology: can we see the patterns? Neuropsychobiology 80: 101–133, https://doi.org/10.1159/000513688.Search in Google Scholar PubMed

Trofimova, I. (2021b). Functional constructivism approach to multilevel nature of biobehavioural diversity. Front. Psychiatr. 12: 641286, https://doi.org/10.3389/fpsyt.2021.641286.Search in Google Scholar PubMed PubMed Central

Trofimova, I. (2022). Transient nature of stable behavioural patterns, and how we can respect it. Curr. Opin. Behav. Sci. 44: 101109, https://doi.org/10.1016/j.cobeha.2022.101109.Search in Google Scholar

Trofimova, I. (2023). Analytic background in the neuroscience of the potential project “Hippocrates”. Brain Sci. 13: 39, https://doi.org/10.3390/brainsci13010039.Search in Google Scholar PubMed PubMed Central

Trofimova, I. and Gaykalova, A. (2021). Emotionality vs. other biobehavioural traits: a look at neurochemical biomarkers for their differentiation. Front. Psychol. 12: 781631, https://doi.org/10.3389/fpsyg.2021.781631.Search in Google Scholar PubMed PubMed Central

Trofimova, I. and Robbins, T. (2016). Temperament and arousal systems: a new synthesis of differential psychology and functional neurochemistry. Neurosci. Biobehav. Rev. 64: 382–402, https://doi.org/10.1016/j.neubiorev.2016.03.008.Search in Google Scholar PubMed

Trofimova, I. and Sulis, W. (2016a). Benefits of distinguishing between physical and social-verbal aspects of behavior: an example of generalized anxiety. Front. Psychol. 7: 338, https://doi.org/10.3389/fpsyg.2016.00338.Search in Google Scholar PubMed PubMed Central

Trofimova, I. and Sulis, W. (2016b). A study of the coupling of FET temperament traits with major depression. Front. Psychol. 7: 1848, https://doi.org/10.3389/fpsyg.2016.01848.Search in Google Scholar PubMed PubMed Central

Trofimova, I. and Sulis, W. (2018). There is more to mental illness than negative affect: comprehensive temperament profiles in depression and generalized anxiety. BMC Psychiatr. 18: 125, https://doi.org/10.1186/s12888-018-1695-x.Search in Google Scholar PubMed PubMed Central

Trofimova, I., Bajaj, S., Bashkatov, S.A., Blair, J., Brandt, A., Chan, R.C.K., Clemens, B., Corr, P.J., Cyniak-Cieciura, M., Demidova, L., et al.. (2022). What is next for the neurobiology of temperament, personality and psychopathology? Curr. Opin. Behav. Sci. 45: 101143, https://doi.org/10.1016/j.cobeha.2022.101143.Search in Google Scholar

Unsicker, K. and Strelau, J. (2000). Functions of transforming growth factor-beta isoforms in the nervous system. Cues based on localization and experimental in vitro and in vivo evidence. Eur. J. Biochem. 267: 6972–6975, https://doi.org/10.1046/j.1432-1327.2000.01824.x.Search in Google Scholar PubMed

Vargas, K.J., Terunuma, M., Tello, J.A., Pangalos, M.N., Moss, S.J., and Couve, A. (2008). The availability of surface GABA B receptors is independent of gamma-aminobutyric acid but controlled by glutamate in central neurons. J. Biol. Chem. 283: 24641–24648, https://doi.org/10.1074/jbc.m802419200.Search in Google Scholar

Veening, J.G., Gerrits, P.O., and Barendregt, H.P. (2012). Volume transmission of beta-endorphin via the cerebrospinal fluid; a review. Fluids Barriers CNS 9: 16, https://doi.org/10.1186/2045-8118-9-16.Search in Google Scholar PubMed PubMed Central

Waldhoer, M., Bartlett, S.E., and Whistler, J.E. (2014). Opioid receptors. Annu. Rev. Biochem. 73: 953–990, https://doi.org/10.1146/annurev.biochem.73.011303.073940.Search in Google Scholar PubMed

Walsh, K.H., Das, R.K., Saladin, M.E., and Kamboj, S.K. (2018). Modulation of naturalistic maladaptive memories using behavioural and pharmacological reconsolidation-interfering strategies: a systematic review and meta-analysis of clinical and ‘sub-clinical’ studies. Psychopharmacology 235: 2507–2527, https://doi.org/10.1007/s00213-018-4983-8.Search in Google Scholar PubMed PubMed Central

Whiting, H.T.A. (1991). Human motor actions. Bernstein reassessed. Elsevier Science Publishers, Amsterdam.Search in Google Scholar

Wideman, C.E., Jardine, K.H., and Winters, B.D. (2018). Involvement of classical neurotransmitter systems in memory reconsolidation: focus on destabilization. Neurobiol. Learn. Mem. 156: 68–79, https://doi.org/10.1016/j.nlm.2018.11.001.Search in Google Scholar PubMed

Wilson, E.O. (1978). Ecology of ants and termites. Science 201: 337, https://doi.org/10.1126/science.201.4353.337-a.Search in Google Scholar PubMed

Zarrindast, M.R. and Khakpai, F. (2020). State-dependent memory and its modulation by different brain areas and neurotransmitters. EXCLI J 19: 1081–1099.Search in Google Scholar

Zeng, Y., Tao, F., Cui, Z., Wu, L., Xu, J., Dong, W., Liu, C., Yang, Z., and Qin, S. (2021). Dynamic integration and segregation of amygdala subregional functional circuits linking to physiological arousal. Neuroimage 238: 118224, https://doi.org/10.1016/j.neuroimage.2021.118224.Search in Google Scholar PubMed

Zühlsdorff, K., Dalley, J.W., Robbins, T.W., and Morein-Zamir, S. (2022). Cognitive flexibility: neurobehavioral correlates of changing one’s mind. Cerebr. Cortex, https://doi.org/10.1093/cercor/bhac431.Search in Google Scholar PubMed PubMed Central

Received: 2022-10-01
Accepted: 2022-12-07
Published Online: 2022-12-30
Published in Print: 2023-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2022-0120/html
Scroll to top button