Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 2, 2023

Targeting NMDA receptor signaling for therapeutic intervention in brain disorders

  • He Chen , Yuanping Dong , Yun Wu and Feng Yi ORCID logo EMAIL logo

Abstract

N-Methyl-d-aspartate (NMDA) receptor hyperfunction plays a key role in the pathological processes of depression and neurodegenerative diseases, whereas NMDA receptor hypofunction is implicated in schizophrenia. Considerable efforts have been made to target NMDA receptor function for the therapeutic intervention in those brain disorders. In this mini-review, we first discuss ion flux-dependent NMDA receptor signaling and ion flux-independent NMDA receptor signaling that result from structural rearrangement upon binding of endogenous agonists. Then, we review current strategies for exploring druggable targets of the NMDA receptor signaling and promising future directions, which are poised to result in new therapeutic agents for several brain disorders.


Corresponding author: Feng Yi, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 32271076

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Support was from National Natural Science Foundation of China, grant approval number 32271076.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Bading, H. (2017). Therapeutic targeting of the pathological triad of extrasynaptic NMDA receptor signaling in neurodegenerations. J. Exp. Med. 214: 569–578, https://doi.org/10.1084/jem.20161673.Search in Google Scholar PubMed PubMed Central

Bannerman, D.M., Niewoehner, B., Lyon, L., Romberg, C., Schmitt, W.B., Taylor, A., Sanderson, D.J., Cottam, J., Sprengel, R., Seeburg, P.H., et al.. (2008). NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory. J. Neurosci. 28: 3623–3630, https://doi.org/10.1523/jneurosci.3639-07.2008.Search in Google Scholar PubMed PubMed Central

Barria, A. and Malinow, R. (2005). NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48: 289–301, https://doi.org/10.1016/j.neuron.2005.08.034.Search in Google Scholar PubMed

Bartlett, T.E., Bannister, N.J., Collett, V.J., Dargan, S.L., Massey, P.V., Bortolotto, Z.A., Fitzjohn, S.M., Bashir, Z.I., Collingridge, G.L., and Lodge, D. (2007). Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology 52: 60–70, https://doi.org/10.1016/j.neuropharm.2006.07.013.Search in Google Scholar PubMed

Beneyto, M. and Meador-Woodruff, J.H. (2008). Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology 33: 2175–2186, https://doi.org/10.1038/sj.npp.1301604.Search in Google Scholar PubMed

Berman, R.M., Cappiello, A., Anand, A., Oren, D.A., Heninger, G.R., Charney, D.S., and Krystal, J.H. (2000). Antidepressant effects of ketamine in depressed patients. Biol. Psychiatr. 47: 351–354, https://doi.org/10.1016/s0006-3223(99)00230-9.Search in Google Scholar PubMed

Bhattacharya, S., Khatri, A., Swanger, S.A., DiRaddo, J.O., Yi, F., Hansen, K.B., Yuan, H., and Traynelis, S.F. (2018). Triheteromeric GluN1/GluN2A/GluN2C NMDARs with unique single-channel properties are the dominant receptor population in cerebellar granule cells. Neuron 99: 315–328 e315, https://doi.org/10.1016/j.neuron.2018.06.010.Search in Google Scholar PubMed PubMed Central

Bossi, S., Dhanasobhon, D., Ellis-Davies, G.C.R., Frontera, J., de Brito Van Velze, M., Lourenco, J., Murillo, A., Lujan, R., Casado, M., Perez-Otano, I., et al.. (2022). GluN3A excitatory glycine receptors control adult cortical and amygdalar circuits. Neuron 110: 2438–2454 e2438, https://doi.org/10.1016/j.neuron.2022.05.016.Search in Google Scholar PubMed PubMed Central

Brigman, J.L., Feyder, M., Saksida, L.M., Bussey, T.J., Mishina, M., and Holmes, A. (2008). Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn. Mem. 15: 50–54, https://doi.org/10.1101/lm.777308.Search in Google Scholar PubMed PubMed Central

Brothwell, S.L., Barber, J.L., Monaghan, D.T., Jane, D.E., Gibb, A.J., and Jones, S. (2008). NR2B- and NR2D-containing synaptic NMDA receptors in developing rat substantia nigra pars compacta dopaminergic neurones. J. Physiol. 586: 739–750, https://doi.org/10.1113/jphysiol.2007.144618.Search in Google Scholar PubMed PubMed Central

Buller, A.L., Larson, H.C., Schneider, B.E., Beaton, J.A., Morrisett, R.A., and Monaghan, D.T. (1994). The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition. J. Neurosci. 14: 5471–5484, https://doi.org/10.1523/jneurosci.14-09-05471.1994.Search in Google Scholar PubMed PubMed Central

Burgdorf, J., Zhang, X.L., Nicholson, K.L., Balster, R.L., Leander, J.D., Stanton, P.K., Gross, A.L., Kroes, R.A., and Moskal, J.R. (2013). GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology 38: 729–742, https://doi.org/10.1038/npp.2012.246.Search in Google Scholar PubMed PubMed Central

Burnell, E.S., Irvine, M., Fang, G., Sapkota, K., Jane, D.E., and Monaghan, D.T. (2019). Positive and negative allosteric modulators of N-Methyl-d-aspartate (NMDA) receptors: structure-activity relationships and mechanisms of action. J. Med. Chem. 62: 3–23, https://doi.org/10.1021/acs.jmedchem.7b01640.Search in Google Scholar PubMed PubMed Central

Cappelli, J., Khacho, P., Wang, B., Sokolovski, A., Bakkar, W., Raymond, S., Ahlskog, N., Pitney, J., Wu, J., Chudalayandi, P., et al.. (2022). Glycine-induced NMDA receptor internalization provides neuroprotection and preserves vasculature following ischemic stroke. iScience 25: 103539, https://doi.org/10.1016/j.isci.2021.103539.Search in Google Scholar PubMed PubMed Central

Chan, K., Nestor, J., Huerta, T.S., Certain, N., Moody, G., Kowal, C., Huerta, P.T., Volpe, B.T., Diamond, B., and Wollmuth, L.P. (2020). Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Nat. Commun. 11: 1403, https://doi.org/10.1038/s41467-020-15224-w.Search in Google Scholar PubMed PubMed Central

Chen, L., Muhlhauser, M., and Yang, C.R. (2003). Glycine transporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J. Neurophysiol. 89: 691–703, https://doi.org/10.1152/jn.00680.2002.Search in Google Scholar PubMed

Chen, M.H., Cheng, C.M., Gueorguieva, R., Lin, W.C., Li, C.T., Hong, C.J., Tu, P.C., Bai, Y.M., Tsai, S.J., Krystal, J.H., et al.. (2019). Maintenance of antidepressant and antisuicidal effects by D-cycloserine among patients with treatment-resistant depression who responded to low-dose ketamine infusion: a double-blind randomized placebo-control study. Neuropsychopharmacology 44: 2112–2118, https://doi.org/10.1038/s41386-019-0480-y.Search in Google Scholar PubMed PubMed Central

Choo, A.M., Geddes-Klein, D.M., Hockenberry, A., Scarsella, D., Mesfin, M.N., Singh, P., Patel, T.P., and Meaney, D.F. (2012). NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem. Int. 60: 506–516, https://doi.org/10.1016/j.neuint.2012.02.007.Search in Google Scholar PubMed PubMed Central

Chou, T.H., Kang, H., Simorowski, N., Traynelis, S.F., and Furukawa, H. (2022). Structural insights into assembly and function of GluN1-2C, GluN1-2A-2C, and GluN1-2D NMDARs. Mol. Cell. 82: 4548–4563, https://doi.org/10.1016/j.molcel.2022.10.008.Search in Google Scholar PubMed PubMed Central

Clayton, D.A., Mesches, M.H., Alvarez, E., Bickford, P.C., and Browning, M.D. (2002). A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat. J. Neurosci. 22: 3628–3637, https://doi.org/10.1523/jneurosci.22-09-03628.2002.Search in Google Scholar PubMed PubMed Central

Clements, J.D. and Westbrook, G.L. (1991). Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7: 605–613.https://doi.org/10.1016/0896-6273(91)90373-8Search in Google Scholar PubMed

Collingridge, G.L. and Monaghan, D.T. (2022). The continually evolving role of NMDA receptors in neurobiology and disease. Neuropharmacology 210: 109042.https://doi.org/10.1016/j.neuropharm.2022.109042Search in Google Scholar PubMed

Collingridge, G.L., Kehl, S.J., and McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 334: 33–46.https://doi.org/10.1113/jphysiol.1983.sp014478Search in Google Scholar PubMed PubMed Central

Cui, H., Hayashi, A., Sun, H.S., Belmares, M.P., Cobey, C., Phan, T., Schweizer, J., Salter, M.W., Wang, Y.T., Tasker, R.A., et al.. (2007). PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J. Neurosci. 27: 9901–9915, https://doi.org/10.1523/jneurosci.1464-07.2007.Search in Google Scholar PubMed PubMed Central

Cummings, K.A. and Popescu, G.K. (2016). Protons potentiate GluN1/GluN3A currents by attenuating their desensitisation. Sci. Rep. 6: 23344, https://doi.org/10.1038/srep23344.Search in Google Scholar PubMed PubMed Central

Dalmau, J., Gleichman, A.J., Hughes, E.G., Rossi, J.E., Peng, X., Lai, M., Dessain, S.K., Rosenfeld, M.R., Balice-Gordon, R., and Lynch, D.R. (2008). Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 7: 1091–1098, https://doi.org/10.1016/s1474-4422(08)70224-2.Search in Google Scholar PubMed PubMed Central

Dalmau, J., Armangue, T., Planaguma, J., Radosevic, M., Mannara, F., Leypoldt, F., Geis, C., Lancaster, E., Titulaer, M.J., Rosenfeld, M.R., et al.. (2019). An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol. 18: 1045–1057, https://doi.org/10.1016/s1474-4422(19)30244-3.Search in Google Scholar PubMed

Dalva, M.B., Takasu, M.A., Lin, M.Z., Shamah, S.M., Hu, L., Gale, N.W., and Greenberg, M.E. (2000). EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103: 945–956, https://doi.org/10.1016/s0092-8674(00)00197-5.Search in Google Scholar PubMed

Danysz, W. and Parsons, C.G. (1998). Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol. Rev. 50: 597–664.Search in Google Scholar

Davis, M., Ressler, K., Rothbaum, B.O., and Richardson, R. (2006). Effects of D-cycloserine on extinction: translation from preclinical to clinical work. Biol. Psychiatr. 60: 369–375, https://doi.org/10.1016/j.biopsych.2006.03.084.Search in Google Scholar PubMed

Fan, X., Jin, W.Y., Lu, J., Wang, J., and Wang, Y.T. (2014). Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat. Neurosci. 17: 471–480, https://doi.org/10.1038/nn.3637.Search in Google Scholar PubMed PubMed Central

Ferreira, J.S., Papouin, T., Ladepeche, L., Yao, A., Langlais, V.C., Bouchet, D., Dulong, J., Mothet, J.P., Sacchi, S., Pollegioni, L., et al.. (2017). Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses. eLife 6: 1–22, https://doi.org/10.7554/eLife.25492.Search in Google Scholar PubMed PubMed Central

Forrest, D., Yuzaki, M., Soares, H.D., Ng, L., Luk, D.C., Sheng, M., Stewart, C.L., Morgan, J.I., Connor, J.A., and Curran, T. (1994). Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13: 325–338, https://doi.org/10.1016/0896-6273(94)90350-6.Search in Google Scholar PubMed

Ge, Y., Chen, W., Axerio-Cilies, P., and Wang, Y.T. (2020). NMDARs in cell survival and death: implications in stroke pathogenesis and treatment. Trends Mol. Med. 26: 533–551, https://doi.org/10.1016/j.molmed.2020.03.001.Search in Google Scholar PubMed

Geoffroy, C., Paoletti, P., and Mony, L. (2022). Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. J. Physiol. 600: 233–259.10.1113/JP280875Search in Google Scholar PubMed

Gerhard, D.M., Pothula, S., Liu, R.J., Wu, M., Li, X.Y., Girgenti, M.J., Taylor, S.R., Duman, C.H., Delpire, E., Picciotto, M., et al.. (2020). GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J. Clin. Invest. 130: 1336–1349, https://doi.org/10.1172/jci130808.Search in Google Scholar

Gilbert, M.E. and Mack, C.M. (1990). The NMDA antagonist, MK-801, suppresses long-term potentiation, kindling, and kindling-induced potentiation in the perforant path of the unanesthetized rat. Brain Res. 519: 89–96, https://doi.org/10.1016/0006-8993(90)90064-i.Search in Google Scholar PubMed

Grand, T., Abi Gerges, S., David, M., Diana, M.A., and Paoletti, P. (2018). Unmasking GluN1/GluN3A excitatory glycine NMDA receptors. Nat. Commun. 9: 4769, https://doi.org/10.1038/s41467-018-07236-4.Search in Google Scholar PubMed PubMed Central

Gray, J.A., Zito, K., and Hell, J.W. (2016). Non-ionotropic signaling by the NMDA receptor: controversy and opportunity. F1000 Res. 5: 1–8, https://doi.org/10.12688/f1000research.8366.1.Search in Google Scholar PubMed PubMed Central

Gupta, S.C., Ravikrishnan, A., Liu, J., Mao, Z., Pavuluri, R., Hillman, B.G., Gandhi, P.J., Stairs, D.J., Li, M., Ugale, R.R., et al.. (2016). The NMDA receptor GluN2C subunit controls cortical excitatory-inhibitory balance, neuronal oscillations and cognitive function. Sci. Rep. 6: 38321, https://doi.org/10.1038/srep38321.Search in Google Scholar PubMed PubMed Central

Hackos, D.H., Lupardus, P.J., Grand, T., Chen, Y., Wang, T.M., Reynen, P., Gustafson, A., Wallweber, H.J., Volgraf, M., Sellers, B.D., et al.. (2016). Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron 89: 983–999, https://doi.org/10.1016/j.neuron.2016.01.016.Search in Google Scholar PubMed

Halt, A.R., Dallapiazza, R.F., Zhou, Y., Stein, I.S., Qian, H., Juntti, S., Wojcik, S., Brose, N., Silva, A.J., and Hell, J.W. (2012). CaMKII binding to GluN2B is critical during memory consolidation. EMBO J. 31: 1203–1216, https://doi.org/10.1038/emboj.2011.482.Search in Google Scholar PubMed PubMed Central

Han, L., Campanucci, V.A., Cooke, J., and Salter, M.W. (2013). Identification of a single amino acid in GluN1 that is critical for glycine-primed internalization of NMDA receptors. Mol. Brain 6: 36, https://doi.org/10.1186/1756-6606-6-36Search in Google Scholar PubMed PubMed Central

Hansen, K.B., Ogden, K.K., Yuan, H., and Traynelis, S.F. (2014). Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81: 1084–1096, https://doi.org/10.1016/j.neuron.2014.01.035.Search in Google Scholar PubMed PubMed Central

Hansen, K.B., Yi, F., Perszyk, R.E., Furukawa, H., Wollmuth, L.P., Gibb, A.J., and Traynelis, S.F. (2018). Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150: 1081–1105, https://doi.org/10.1085/jgp.201812032.Search in Google Scholar PubMed PubMed Central

Hansen, K.B., Wollmuth, L.P., Bowie, D., Furukawa, H., Menniti, F.S., Sobolevsky, A.I., Swanson, G.T., Swanger, S.A., Greger, I.H., and Nakagawa, T. (2021). Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73: 298–487, https://doi.org/10.1124/pharmrev.120.000131.Search in Google Scholar PubMed PubMed Central

Hardingham, G.E. and Bading, H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11: 682–696, https://doi.org/10.1038/nrn2911.Search in Google Scholar PubMed PubMed Central

Hardingham, G.E., Fukunaga, Y., and Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5: 405–414, https://doi.org/10.1038/nn835.Search in Google Scholar PubMed

Harsing, L.G.Jr. and Matyus, P. (2013). Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters. Brain Res. Bull. 93: 110–119, https://doi.org/10.1016/j.brainresbull.2012.12.002.Search in Google Scholar PubMed

Hashimoto, K. (2016). Letter to the Editor: R-ketamine: a rapid-onset and sustained antidepressant without risk of brain toxicity. Psychol. Med. 46: 2449–2451, https://doi.org/10.1017/s0033291716000969.Search in Google Scholar PubMed

Hashimoto, K. (2019). Rapid-acting antidepressant ketamine, its metabolites and other candidates: a historical overview and future perspective. Psychiatr. Clin. Neurosci. 73: 613–627, https://doi.org/10.1111/pcn.12902.Search in Google Scholar PubMed PubMed Central

Henderson, J.T., Georgiou, J., Jia, Z., Robertson, J., Elowe, S., Roder, J.C., and Pawson, T. (2001). The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32: 1041–1056, https://doi.org/10.1016/s0896-6273(01)00553-0.Search in Google Scholar PubMed

Herring, B.E. and Nicoll, R.A. (2016). Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu. Rev. Physiol. 78: 351–365, https://doi.org/10.1146/annurev-physiol-021014-071753.Search in Google Scholar PubMed

Hill, M.D., Goyal, M., Menon, B.K., Nogueira, R.G., McTaggart, R.A., Demchuk, A.M., Poppe, A.Y., Buck, B.H., Field, T.S., Dowlatshahi, D., et al.. (2020). Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 395: 878–887, https://doi.org/10.1016/S0140-6736(20)30258-0.Search in Google Scholar PubMed

Hollmann, M. and Heinemann, S. (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17: 31–108, https://doi.org/10.1146/annurev.ne.17.030194.000335.Search in Google Scholar PubMed

Huang, C.C., Wei, I.H., Huang, C.L., Chen, K.T., Tsai, M.H., Tsai, P., Tun, R., Huang, K.H., Chang, Y.C., Lane, H.Y., et al.. (2013). Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol. Psychiatr. 74: 734–741, https://doi.org/10.1016/j.biopsych.2013.02.020.Search in Google Scholar PubMed

Hughes, E.G., Peng, X., Gleichman, A.J., Lai, M., Zhou, L., Tsou, R., Parsons, T.D., Lynch, D.R., Dalmau, J., and Balice-Gordon, R.J. (2010). Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J. Neurosci. 30: 5866–5875, https://doi.org/10.1523/jneurosci.0167-10.2010.Search in Google Scholar

Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P., and Grant, S.G. (2000). Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3: 661–669, https://doi.org/10.1038/76615.Search in Google Scholar PubMed

Ikonomidou, C. and Turski, L. (2002). Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1: 383–386, https://doi.org/10.1016/s1474-4422(02)00164-3.Search in Google Scholar PubMed

Jessen, M., Frederiksen, K., Yi, F., Clausen, R.P., Hansen, K.B., Brauner-Osborne, H., Kilburn, P., and Damholt, A. (2017). Identification of AICP as a GluN2C-selective N-Methyl-d-Aspartate receptor superagonist at the GluN1 Glycine site. Mol. Pharmacol. 92: 151–161, https://doi.org/10.1124/mol.117.108944.Search in Google Scholar PubMed PubMed Central

Karakas, E. and Furukawa, H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344: 992–997, https://doi.org/10.1126/science.1251915Search in Google Scholar PubMed PubMed Central

Kato, T. and Duman, R.S. (2020). Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: convergent mechanisms. Pharmacol. Biochem. Behav. 188: 172827, https://doi.org/10.1016/j.pbb.2019.172827.Search in Google Scholar PubMed

Kemp, N., McQueen, J., Faulkes, S., and Bashir, Z.I. (2000). Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. Eur. J. Neurosci. 12: 360–366, https://doi.org/10.1046/j.1460-9568.2000.00903.x.Search in Google Scholar PubMed

Kim, C.H. and Lisman, J.E. (1999). A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19: 4314–4324, https://doi.org/10.1523/jneurosci.19-11-04314.1999.Search in Google Scholar

Kotermanski, S.E. and Johnson, J.W. (2009). Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J. Neurosci. 29: 2774–2779, https://doi.org/10.1523/jneurosci.3703-08.2009.Search in Google Scholar

Krystal, J.H., Abdallah, C.G., Sanacora, G., Charney, D.S., and Duman, R.S. (2019). Ketamine: a paradigm shift for depression research and treatment. Neuron 101: 774–778, https://doi.org/10.1016/j.neuron.2019.02.005.Search in Google Scholar PubMed PubMed Central

Kuppili, P.P., Menon, V., Sathyanarayanan, G., Sarkar, S., and Andrade, C. (2021). Efficacy of adjunctive D-Cycloserine for the treatment of schizophrenia: a systematic review and meta-analysis of randomized controlled trials. J. Neural. Transm. 128: 253–262, https://doi.org/10.1007/s00702-020-02292-x.Search in Google Scholar PubMed

Lai, C.S., Franke, T.F., and Gan, W.B. (2012). Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483: 87–91, https://doi.org/10.1038/nature10792.Search in Google Scholar PubMed

Lee, C.H., Lu, W., Michel, J.C., Goehring, A., Du, J., Song, X., and Gouaux, E. (2014). NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511: 191–197, https://doi.org/10.1038/nature13548.Search in Google Scholar PubMed PubMed Central

Leonard, A.S., Lim, I.A., Hemsworth, D.E., Horne, M.C., and Hell, J.W. (1999). Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. U.S.A. 96: 3239–3244. https://doi.org/10.1073/pnas.96.6.3239.Search in Google Scholar PubMed PubMed Central

Li, H., Rajani, V., Han, L., Chung, D., Cooke, J.E., Sengar, A.S., and Salter, M.W. (2021). Alternative splicing of GluN1 gates glycine site-dependent nonionotropic signaling by NMDAR receptors. Proc. Natl. Acad. Sci. U.S.A. 118: 1–11, https://doi.org/10.1073/pnas.2026411118.Search in Google Scholar PubMed PubMed Central

Lind, G.E., Mou, T.C., Tamborini, L., Pomper, M.G., De Micheli, C., Conti, P., Pinto, A., and Hansen, K.B. (2017). Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits. Proc. Natl. Acad. Sci. U.S.A. 114: E6942–E6951, https://doi.org/10.1073/pnas.1707752114.Search in Google Scholar PubMed PubMed Central

Lisman, J., Yasuda, R., and Raghavachari, S. (2012). Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13: 169–182, https://doi.org/10.1038/nrn3192.Search in Google Scholar PubMed PubMed Central

Liu, J., Chang, L., Song, Y., Li, H., and Wu, Y. (2019). The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci. 13: 43, https://doi.org/10.3389/fnins.2019.00043.Search in Google Scholar PubMed PubMed Central

Liu, L., Wong, T.P., Pozza, M.F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y.P., and Wang, Y.T. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304: 1021–1024, https://doi.org/10.1126/science.1096615.Search in Google Scholar PubMed

Liu, Y., Wong, T.P., Aarts, M., Rooyakkers, A., Liu, L., Lai, T.W., Wu, D.C., Lu, J., Tymianski, M., Craig, A.M., et al.. (2007). NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci. 27: 2846–2857, https://doi.org/10.1523/jneurosci.0116-07.2007.Search in Google Scholar

Lu, W., Du, J., Goehring, A., and Gouaux, E. (2017). Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 355: 1–9, https://doi.org/10.1126/science.aal3729.Search in Google Scholar PubMed PubMed Central

Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., and Schottler, F. (1983). Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305: 719–721, https://doi.org/10.1038/305719a0.Search in Google Scholar PubMed

Malinow, R., Schulman, H., and Tsien, R.W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245: 862–866, https://doi.org/10.1126/science.2549638.Search in Google Scholar PubMed

Mikasova, L., De Rossi, P., Bouchet, D., Georges, F., Rogemond, V., Didelot, A., Meissirel, C., Honnorat, J., and Groc, L. (2012). Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain 135: 1606–1621, https://doi.org/10.1093/brain/aws092.Search in Google Scholar PubMed

Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., and Seeburg, P.H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529–540, https://doi.org/10.1016/0896-6273(94)90210-0.Search in Google Scholar PubMed

Moskal, J.R., Burgdorf, J.S., Stanton, P.K., Kroes, R.A., Disterhoft, J.F., Burch, R.M., and Khan, M.A. (2017). The development of Rapastinel (formerly GLYX-13); A rapid acting and long lasting antidepressant. Curr. Neuropharmacol. 15: 47–56, https://doi.org/10.2174/1570159x14666160321122703.Search in Google Scholar PubMed PubMed Central

Mulkey, R.M., Endo, S., Shenolikar, S., and Malenka, R.C. (1994). Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369: 486–488, https://doi.org/10.1038/369486a0.Search in Google Scholar PubMed

Nabavi, S., Kessels, H.W., Alfonso, S., Aow, J., Fox, R., and Malinow, R. (2013). Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc. Natl. Acad. Sci. U.S.A. 110: 4027–403, https://doi.org/10.1073/pnas.1219454110.Search in Google Scholar PubMed PubMed Central

Nakazawa, K. and Sapkota, K. (2020). The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol. Ther. 205: 107426, https://doi.org/10.1016/j.pharmthera.2019.107426.Search in Google Scholar PubMed PubMed Central

Nakazawa, T., Komai, S., Watabe, A.M., Kiyama, Y., Fukaya, M., Arima-Yoshida, F., Horai, R., Sudo, K., Ebine, K., Delawary, M., et al.. (2006). NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity. EMBO J. 25: 2867–2877, https://doi.org/10.1038/sj.emboj.7601156.Search in Google Scholar PubMed PubMed Central

Nicoll, R.A. (2017). A brief history of long-term potentiation. Neuron 93: 281–290, https://doi.org/10.1016/j.neuron.2016.12.015.Search in Google Scholar PubMed

Nong, Y., Huang, Y.Q., and Salter, M.W. (2004). NMDA receptors are movin’ in. Curr. Opin. Neurobiol. 14: 353–361, https://doi.org/10.1016/j.conb.2004.05.001.Search in Google Scholar PubMed

Nong, Y., Huang, Y.Q., Ju, W., Kalia, L.V., Ahmadian, G., Wang, Y.T., and Salter, M.W. (2003). Glycine binding primes NMDA receptor internalization. Nature 422: 302–307, https://doi.org/10.1038/nature01497.Search in Google Scholar PubMed

Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307: 462–465, https://doi.org/10.1038/307462a0.Search in Google Scholar PubMed

Ogden, K.K., Khatri, A., Traynelis, S.F., and Heldt, S.A. (2014). Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice. Neuropsychopharmacology 39: 625–637, https://doi.org/10.1038/npp.2013.241.Search in Google Scholar PubMed PubMed Central

Otmakhova, N.A., Otmakhov, N., Mortenson, L.H., and Lisman, J.E. (2000). Inhibition of the cAMP pathway decreases early long-term potentiation at CA1 hippocampal synapses. J. Neurosci. 20: 4446–4451, https://doi.org/10.1523/jneurosci.20-12-04446.2000.Search in Google Scholar

Otsu, Y., Darcq, E., Pietrajtis, K., Matyas, F., Schwartz, E., Bessaih, T., Abi Gerges, S., Rousseau, C.V., Grand, T., Dieudonne, S., et al.. (2019). Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula. Science 366: 250–254, https://doi.org/10.1126/science.aax1522.Search in Google Scholar PubMed PubMed Central

Paoletti, P., Bellone, C., and Zhou, Q. (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14: 383–400, https://doi.org/10.1038/nrn3504.Search in Google Scholar PubMed

Papouin, T., Ladepeche, L., Ruel, J., Sacchi, S., Labasque, M., Hanini, M., Groc, L., Pollegioni, L., Mothet, J.P., and Oliet, S.H. (2012). Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150: 633–646, https://doi.org/10.1016/j.cell.2012.06.029.Search in Google Scholar PubMed

Parekh, A.B. (2008). Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function. J. Physiol. 586: 3043–3054, https://doi.org/10.1113/jphysiol.2008.153460.Search in Google Scholar PubMed PubMed Central

Park, D.K., Stein, I.S., and Zito, K. (2022). Ion flux-independent NMDA receptor signaling. Neuropharmacology 210: 109019, https://doi.org/10.1016/j.neuropharm.2022.109019.Search in Google Scholar PubMed PubMed Central

Park, L.T., Kadriu, B., Gould, T.D., Zanos, P., Greenstein, D., Evans, J.W., Yuan, P., Farmer, C.A., Oppenheimer, M., George, J.M., et al.. (2020). A randomized trial of the N-methyl-d-aspartate receptor Glycine site antagonist prodrug 4-chlorokynurenine in treatment-resistant depression. Int. J. Neuropsychopharmacol. 23: 417–426, https://doi.org/10.1093/ijnp/pyaa025.Search in Google Scholar PubMed PubMed Central

Pei, L., Shang, Y., Jin, H., Wang, S., Wei, N., Yan, H., Wu, Y., Yao, C., Wang, X., Zhu, L.Q., et al.. (2014). DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J. Neurosci. 34: 6546–6556, https://doi.org/10.1523/jneurosci.5119-13.2014.Search in Google Scholar PubMed PubMed Central

Perez-Otano, I., Larsen, R.S., and Wesseling, J.F. (2016). Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat. Rev. Neurosci. 17: 623–635, https://doi.org/10.1038/nrn.2016.92.Search in Google Scholar PubMed

Petit-Pedrol, M. and Groc, L. (2021). Regulation of membrane NMDA receptors by dynamics and protein interactions. J. Cell Biol. 220: 1–15, https://doi.org/10.1083/jcb.202006101.Search in Google Scholar PubMed PubMed Central

Peyrovian, B., Rosenblat, J.D., Pan, Z., Iacobucci, M., Brietzke, E., and McIntyre, R.S. (2019). The glycine site of NMDA receptors: a target for cognitive enhancement in psychiatric disorders. Prog. Neuro Psychopharmacol. Biol. Psychiatr. 92: 387–404, https://doi.org/10.1016/j.pnpbp.2019.02.001.Search in Google Scholar PubMed

Planaguma, J., Haselmann, H., Mannara, F., Petit-Pedrol, M., Grunewald, B., Aguilar, E., Ropke, L., Martin-Garcia, E., Titulaer, M.J., Jercog, P., et al.. (2016). Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity. Ann. Neurol. 80: 388–400, https://doi.org/10.1002/ana.24721.Search in Google Scholar PubMed PubMed Central

Pochwat, B., Nowak, G., and Szewczyk, B. (2019). An update on NMDA antagonists in depression. Expert. Nev. Neurother. 19: 1055–1067, https://doi.org/10.1080/14737175.2019.1643237.Search in Google Scholar PubMed

Preskorn, S.H., Baker, B., Kolluri, S., Menniti, F.S., Krams, M., and Landen, J.W. (2008). An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J. Clin. Psychopharmacol. 28: 631–637, https://doi.org/10.1097/jcp.0b013e31818a6cea.Search in Google Scholar PubMed

Rajani, V., Sengar, A.S., and Salter, M.W. (2020). Tripartite signalling by NMDA receptors. Mol. Brain 13: 23, https://doi.org/10.1186/s13041-020-0563-z.Search in Google Scholar PubMed PubMed Central

Rauner, C. and Kohr, G. (2011). Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem. 286: 7558–7566, https://doi.org/10.1074/jbc.m110.182600.Search in Google Scholar

Reisberg, B., Doody, R., Stoffler, A., Schmitt, F., Ferris, S., Mobius, H.J., and Memantine Study, G. (2003). Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 348: 1333–1341, https://doi.org/10.1056/nejmoa013128.Search in Google Scholar

Rosenmund, C., Stern-Bach, Y., and Stevens, C.F. (1998). The tetrameric structure of a glutamate receptor channel. Science 280: 1596–1599, https://doi.org/10.1126/science.280.5369.1596.Search in Google Scholar PubMed

Rostas, J.A., Brent, V.A., Voss, K., Errington, M.L., Bliss, T.V., and Gurd, J.W. (1996). Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate receptor in long-term potentiation. Proc. Natl. Acad. Sci. U.S.A. 93: 10452–10456, https://doi.org/10.1073/pnas.93.19.10452.Search in Google Scholar PubMed PubMed Central

Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., Kushiya, E., Yagi, T., Aizawa, S., Inoue, Y., Sugiyama, H., et al.. (1995). Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373: 151–155, https://doi.org/10.1038/373151a0.Search in Google Scholar PubMed

Sanchez-Lopez, E., Ettcheto, M., Egea, M.A., Espina, M., Cano, A., Calpena, A.C., Camins, A., Carmona, N., Silva, A.M., Souto, E.B., et al.. (2018). Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. J. Nanobiotechnol. 16: 32, https://doi.org/10.1186/s12951-018-0356-z.Search in Google Scholar PubMed PubMed Central

Sasaki, Y.F., Rothe, T., Premkumar, L.S., Das, S., Cui, J., Talantova, M.V., Wong, H.K., Gong, X., Chan, S.F., Zhang, D., et al.. (2002). Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J. Neurophysiol. 87: 2052–2063, https://doi.org/10.1152/jn.00531.2001.Search in Google Scholar PubMed

Sensi, S.L., Paoletti, P., Koh, J.Y., Aizenman, E., Bush, A.I., and Hershfinkel, M. (2011). The neurophysiology and pathology of brain zinc. J. Neurosci. 31: 16076–16085, https://doi.org/10.1523/jneurosci.3454-11.2011.Search in Google Scholar PubMed PubMed Central

Serulle, Y., Zhang, S., Ninan, I., Puzzo, D., McCarthy, M., Khatri, L., Arancio, O., and Ziff, E.B. (2007). A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 56: 670–688, https://doi.org/10.1016/j.neuron.2007.09.016.Search in Google Scholar PubMed PubMed Central

Shelkar, G.P., Pavuluri, R., Gandhi, P.J., Ravikrishnan, A., Gawande, D.Y., Liu, J., Stairs, D.J., Ugale, R.R., and Dravid, S.M. (2019). Differential effect of NMDA receptor GluN2C and GluN2D subunit ablation on behavior and channel blocker-induced schizophrenia phenotypes. Sci. Rep. 9: 7572, https://doi.org/10.1038/s41598-019-43957-2.Search in Google Scholar PubMed PubMed Central

Sheng, M. and Hoogenraad, C.C. (2007). The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76: 823–847, https://doi.org/10.1146/annurev.biochem.76.060805.160029.Search in Google Scholar PubMed

Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N., and Jan, L.Y. (1994). Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144–147, https://doi.org/10.1038/368144a0.Search in Google Scholar PubMed

Slattery, D.A., Hudson, A.L., and Nutt, D.J. (2004). Invited review: the evolution of antidepressant mechanisms. Fundam. Clin. Pharmacol. 18: 1–21, https://doi.org/10.1111/j.1472-8206.2004.00195.x.Search in Google Scholar PubMed

Sobolevsky, A.I. and Yelshansky, M.V. (2000). The trapping block of NMDA receptor channels in acutely isolated rat hippocampal neurones. J. Physiol. 526: 493–506, https://doi.org/10.1111/j.1469-7793.2000.t01-2-00493.x.Search in Google Scholar PubMed PubMed Central

Stein, I.S., Gray, J.A., and Zito, K. (2015). Non-ionotropic NMDA receptor signaling drives activity-induced dendritic spine shrinkage. J. Neurosci. 35: 12303–12308, https://doi.org/10.1523/jneurosci.4289-14.2015.Search in Google Scholar

Stein, I.S., Park, D.K., Claiborne, N., and Zito, K. (2021). Non-ionotropic NMDA receptor signaling gates bidirectional structural plasticity of dendritic spines. Cell Rep. 34: 108664, https://doi.org/10.1016/j.celrep.2020.108664.Search in Google Scholar PubMed PubMed Central

Strack, S. and Colbran, R.J. (1998). Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J. Biol. Chem. 273: 20689–20692, https://doi.org/10.1074/jbc.273.33.20689.Search in Google Scholar PubMed

Strack, S., Robison, A.J., Bass, M.A., and Colbran, R.J. (2000). Association of calcium/calmodulin-dependent kinase II with developmentally regulated splice variants of the postsynaptic density protein densin-180. J. Biol. Chem. 275: 25061–25064, https://doi.org/10.1074/jbc.c000319200.Search in Google Scholar PubMed

Suryavanshi, P.S., Ugale, R.R., Yilmazer-Hanke, D., Stairs, D.J., and Dravid, S.M. (2014). GluN2C/GluN2D subunit-selective NMDA receptor potentiator CIQ reverses MK-801-induced impairment in prepulse inhibition and working memory in Y-maze test in mice. Br. J. Pharmacol. 171: 799–809, https://doi.org/10.1111/bph.12518.Search in Google Scholar PubMed PubMed Central

Tajima, N., Karakas, E., Grant, T., Simorowski, N., Diaz-Avalos, R., Grigorieff, N., and Furukawa, H. (2016). Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534: 63–68, https://doi.org/10.1038/nature17679.Search in Google Scholar PubMed PubMed Central

Talantova, M., Sanz-Blasco, S., Zhang, X., Xia, P., Akhtar, M.W., Okamoto, S.-i., Dziewczapolski, G., Nakamura, T., Cao, G., and Pratt, A.E. (2013). Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl. Acad. Sci. U.S.A. 110: E2518–E2527, https://doi.org/10.1073/pnas.1306832110.Search in Google Scholar PubMed PubMed Central

Tang, Y.P., Shimizu, E., Dube, G.R., Rampon, C., Kerchner, G.A., Zhuo, M., Liu, G., and Tsien, J.Z. (1999). Genetic enhancement of learning and memory in mice. Nature 401: 63–69, https://doi.org/10.1038/43432.Search in Google Scholar PubMed

Tarabeux, J., Kebir, O., Gauthier, J., Hamdan, F.F., Xiong, L., Piton, A., Spiegelman, D., Henrion, E., Millet, B., Fathalli, F., et al.. (2011). Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatry 1: e55, https://doi.org/10.1038/tp.2011.52.Search in Google Scholar PubMed PubMed Central

Tovar, K.R., McGinley, M.J., and Westbrook, G.L. (2013). Triheteromeric NMDA receptors at hippocampal synapses. J. Neurosci. 33: 9150–9160, https://doi.org/10.1523/jneurosci.0829-13.2013.Search in Google Scholar

Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62: 405–496, https://doi.org/10.1124/pr.109.002451.Search in Google Scholar PubMed PubMed Central

Troubat, R., Barone, P., Leman, S., Desmidt, T., Cressant, A., Atanasova, B., Brizard, B., El Hage, W., Surget, A., and Belzung, C. (2021). Neuroinflammation and depression: a review. Eur. J. Neurosci. 53: 151–171, https://doi.org/10.1111/ejn.14720.Search in Google Scholar PubMed

Tu, W., Xu, X., Peng, L., Zhong, X., Zhang, W., Soundarapandian, M.M., Balel, C., Wang, M., Jia, N., Zhang, W., et al.. (2010). DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140: 222–234, https://doi.org/10.1016/j.cell.2009.12.055.Search in Google Scholar PubMed PubMed Central

Ugalde-Trivino, L. and Diaz-Guerra, M. (2021). PSD-95: an effective target for stroke therapy using neuroprotective peptides. Int. J. Mol. Sci. 22: 1–15, https://doi.org/10.3390/ijms222212585.Search in Google Scholar PubMed PubMed Central

Warnet, X.L., Bakke Krog, H., Sevillano-Quispe, O.G., Poulsen, H., and Kjaergaard, M. (2021). The C-terminal domains of the NMDA receptor: how intrinsically disordered tails affect signalling, plasticity and disease. Eur. J. Neurosci. 54: 6713–6739, https://doi.org/10.1111/ejn.14842.Search in Google Scholar PubMed

Watanabe, M., Inoue, Y., Sakimura, K., and Mishina, M. (1992). Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3: 1138–1140, https://doi.org/10.1097/00001756-199212000-00027.Search in Google Scholar PubMed

Wei, Y., Chang, L., and Hashimoto, K. (2022). Molecular mechanisms underlying the antidepressant actions of arketamine: beyond the NMDA receptor. Mol. Psychiatr. 27: 559–573, https://doi.org/10.1038/s41380-021-01121-1.Search in Google Scholar PubMed PubMed Central

Weilinger, N.L., Tang, P.L., and Thompson, R.J. (2012). Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J. Neurosci. 32: 12579–12588, https://doi.org/10.1523/jneurosci.1267-12.2012.Search in Google Scholar

Weilinger, N.L., Lohman, A.W., Rakai, B.D., Ma, E.M., Bialecki, J., Maslieieva, V., Rilea, T., Bandet, M.V., Ikuta, N.T., Scott, L., et al.. (2016). Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat. Neurosci. 19: 432–442, https://doi.org/10.1038/nn.4236.Search in Google Scholar PubMed

Widman, A.J. and McMahon, L.L. (2018). Disinhibition of CA1 pyramidal cells by low-dose ketamine and other antagonists with rapid antidepressant efficacy. Proc. Natl. Acad. Sci. U.S.A. 115: E3007–E3016, https://doi.org/10.1073/pnas.1718883115.Search in Google Scholar PubMed PubMed Central

Williams, K. (1993). Ifenprodil discriminates subtypes of the N-Methyl-D-Aspartate receptor - selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol. 44: 851–859.Search in Google Scholar

Wong, J.M. and Gray, J.A. (2018). Long-term depression is independent of GluN2 subunit composition. J. Neurosci. 38: 4462–4470, https://doi.org/10.1523/jneurosci.0394-18.2018.Search in Google Scholar PubMed PubMed Central

Wu, Q.J. and Tymianski, M. (2018). Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol. Brain 11: 15, https://doi.org/10.1186/s13041-018-0357-8.Search in Google Scholar PubMed PubMed Central

Yan, J., Bengtson, C.P., Buchthal, B., Hagenston, A.M., and Bading, H. (2020). Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science 370: 1–7, https://doi.org/10.1126/science.aay3302.Search in Google Scholar PubMed

Yang, C., Yang, J., Luo, A., and Hashimoto, K. (2019). Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites. Transl. Psychiatry 9: 280, https://doi.org/10.1038/s41398-019-0624-1.Search in Google Scholar PubMed PubMed Central

Yi, F., Bhattacharya, S., Thompson, C.M., Traynelis, S.F., and Hansen, K.B. (2019). Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors. J. Physiol. 597: 5495–5514, https://doi.org/10.1113/jp278168.Search in Google Scholar

Yi, F., Mou, T.C., Dorsett, K.N., Volkmann, R.A., Menniti, F.S., Sprang, S.R., and Hansen, K.B. (2016). Structural basis for negative allosteric modulation of GluN2A-containing NMDA receptors. Neuron 91: 1316–1329, https://doi.org/10.1016/j.neuron.2016.08.014.Search in Google Scholar PubMed PubMed Central

Zanos, P. and Gould, T.D. (2018). Mechanisms of ketamine action as an antidepressant. Mol. Psychiatr. 23: 801–811, https://doi.org/10.1038/mp.2017.255.Search in Google Scholar PubMed PubMed Central

Zanos, P., Moaddel, R., Morris, P.J., Georgiou, P., Fischell, J., Elmer, G.I., Alkondon, M., Yuan, P., Pribut, H.J., Singh, N.S., et al.. (2016). NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533: 481–486, https://doi.org/10.1038/nature17998.Search in Google Scholar PubMed PubMed Central

Zhang, S., Taghibiglou, C., Girling, K., Dong, Z., Lin, S.Z., Lee, W., Shyu, W.C., and Wang, Y.T. (2013). Critical role of increased PTEN nuclear translocation in excitotoxic and ischemic neuronal injuries. J. Neurosci. 33: 7997–8008, https://doi.org/10.1523/jneurosci.5661-12.2013.Search in Google Scholar

Zhang, X.L., Sullivan, J.A., Moskal, J.R., and Stanton, P.K. (2008). A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus. Neuropharmacology 55: 1238–1250, https://doi.org/10.1016/j.neuropharm.2008.08.018.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Ye, F., Zhang, T., Lv, S., Zhou, L., Du, D., Lin, H., Guo, F., Luo, C., and Zhu, S. (2021). Structural basis of ketamine action on human NMDA receptors. Nature 596: 301–305, https://doi.org/10.1038/s41586-021-03769-9.Search in Google Scholar PubMed

Zhao, F., Atxabal, U., Mariottini, S., Yi, F., Lotti, J.S., Rouzbeh, N., Liu, N., Bunch, L., Hansen, K.B., and Clausen, R.P. (2022). Derivatives of (R)-3-(5-Furanyl)carboxamido-2-aminopropanoic acid as potent NMDA receptor Glycine site agonists with GluN2 subunit-specific activity. J. Med. Chem. 65: 734–746, https://doi.org/10.1021/acs.jmedchem.1c01810.Search in Google Scholar PubMed PubMed Central

Zhou, X., Ding, Q., Chen, Z., Yun, H., and Wang, H. (2013). Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity. J. Biol. Chem. 288: 24151–24159, https://doi.org/10.1074/jbc.m113.482000.Search in Google Scholar PubMed PubMed Central

Zhu, Z., Yi, F., Epplin, M.P., Liu, D., Summer, S.L., Mizu, R., Shaulsky, G., XiangWei, W., Tang, W., Burger, P.B., et al.. (2020). Negative allosteric modulation of GluN1/GluN3 NMDA receptors. Neuropharmacology 176: 108117, https://doi.org/10.1016/j.neuropharm.2020.108117.Search in Google Scholar PubMed PubMed Central

Zong, P., Feng, J., Yue, Z., Li, Y., Wu, G., Sun, B., He, Y., Miller, B., Yu, A.S., Su, Z., et al.. (2022). Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron 110: 1944–1958, https://doi.org/10.1016/j.neuron.2022.03.021.Search in Google Scholar PubMed PubMed Central

Received: 2022-07-31
Accepted: 2022-12-03
Published Online: 2023-01-02
Published in Print: 2023-08-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2022-0096/html
Scroll to top button