Skip to main content

Advertisement

Log in

Optimization and Economic Perspective of Planting Density and Minituber Size in Potato Seed Production

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Minitubers serve as an excellent starting material for disease-less and healthy Pre-Elite seed tuber production. Nevertheless, it requires an optimum choice of production technology due to the associated high costs. Optimization and economic study were carried out using three different minituber sizes and five in-row planting distances of two industrial potato genotypes (Lady Olympia “LO” and Russet Burbank “RBB”). Two years of field data on yield and yield-related traits showed that both genotypes performed better at 26 cm intra-row spacing with large minitubers (≥ 25.1 mm). Planting of ≥ 25.1 mm minitubers resulted in the highest average tuber yield in both genotypes at a narrow planting distance of 10 cm. Minitubers of 20.1–25.0 mm and ≤ 20.0 mm produced low tuber yield at any in-row planting distance since large minitubers possess a high amount of food and energy reserves, which made them suitable for commercial seed production. Regression studies revealed a sequential decrease in tuber yield with an increase in plant spacing irrespective of minituber size. Partial budget analysis suggested that large minitubers (≥ 25.1 mm) gave maximum net returns at 22 and 26 cm in LO, while an efficient intra-row distance in RBB was 18 cm. However, if RBB was sown with minitubers of 20.1–25.0 mm, it yielded the highest economic returns at wider plant spacings (22 and 26 cm). Minitubers of ≤ 20.0 mm generated minimum benefits due to the lowest tuber yield and less net economic returns. This study revealed the importance of optimization of plant density depending on minituber size and cultivars for pre-basic seed potato production.

Resumen

Los minitubérculos sirven como un excelente material de inicio para la producción de tubérculos de semillas Pre-Elite saludables y sin enfermedades. Sin embargo, requiere una elección óptima de la tecnología de producción debido a los altos costos asociados. La optimización y el estudio económico se llevaron a cabo utilizando tres tamaños diferentes de minitubérculos y cinco distancias de siembra en el surco de dos genotipos industriales de papa (Lady Olympia “LO” y Russet Burbank “RBB”). Dos años de datos de campo sobre el rendimiento y los rasgos relacionados con el rendimiento mostraron que ambos genotipos se desempeñaron mejor en un espacio intrasurco de 26 cm con minitubérculos grandes (≥ 25,1 mm). La plantación de minitubérculos de ≥ 25,1 mm dio como resultado el mayor rendimiento promedio de tubérculos en ambos genotipos a una distancia de plantación estrecha de 10 cm. Los minitubérculos de 20.1-25.0 mm y ≤ 20.0 mm produjeron un bajo rendimiento de tubérculos a cualquier distancia de siembra en el surco, ya que los minitubérculos grandes poseen una gran cantidad de reservas de alimentos y energía, lo que los hizo adecuados para la producción comercial de semillas. Los estudios de regresión revelaron una disminución secuencial en el rendimiento del tubérculo con un aumento en el espaciamiento de las plantas independientemente del tamaño del minitubérculo. El análisis parcial del presupuesto sugirió que los minitubérculos grandes (≥ 25,1 mm) dieron rendimientos netos máximos a 22 y 26 cm en LO, mientras que una distancia eficiente dentro del surco en RBB fue de 18 cm. Sin embargo, si la RBB se sembró con minitubérculos de 20,1-25,0 mm, produjo los mayores rendimientos económicos en espacios de plantas más amplios (22 y 26 cm). Los minitubérculos de ≤ 20,0 mm generaron beneficios mínimos debido al menor rendimiento del tubérculo y a los menores rendimientos económicos netos. Este estudio reveló la importancia de la optimización de la densidad de plantas dependiendo del tamaño del minitubérculo y los cultivares para la producción de semilla de papa prebásica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alacho, F. O., B. F. Ngombi, P. M. Persell, M. Y. Mohamed, and J. J. Hakiza. 2000. The contribution of the community seed potato production and storage scheme to food security in Kabale district: A case of Africare/Uganda. In African Potato Association Conference Proceedings 5: 105–108.

  • Barry, P., P. C. Clancy, and M. Molloy. 2001. The effect of seed size and planting depth on the yield of seed potatoes grown from minitubers. Irish Journal of Agricultural and Food Research, 40, 71–81.

  • Bussan, A.J., P.D. Mitchell, M.E. Copas, and M.J. Drilias. 2007. Evaluation of the effect of density on potato yield and tuber size distribution. Crop Science 47: 2462–2472.

    Article  Google Scholar 

  • Çalışkan, M.E., H. Onaran, and H. Arıoğlu. 2010. Overview of the turkish potato sector: challenges, achievements and expectations. Potato Research 53 (4): 255–266.

    Article  Google Scholar 

  • Dimante, I., I. Mežaka, and Z. Gaile. 2019. The effect of minituber weight on their field performance under a northern European environment. Agronomy Research 17 (2): 396–407.

    Google Scholar 

  • Dimante, I., and Z. Gaile. 2015. The effect of planting density on potato (Solanum tuberosum L.) minituber number, weight and multiplication rate. Research for Rural Development 1: 27–33.

    Google Scholar 

  • Fulladolsa, A.C., K.E. LaPlant, R.L. Groves, and A.O. Charkowski. 2018. Potato plants grown from minitubers are delayed in maturity and lower in yield, but are not at a higher risk of potato virus Y infection than plants grown from conventional seed. American Journal of Potato Research 95 (1): 45–53.

    Article  CAS  Google Scholar 

  • Georgakis, D. N., D. I. Karafyllidis, N. I. Stavropoulos, E. X. Nianiou, and I. A. Vezyroglou. 1996. Effect of planting density and size of potato seed-minitubers on the size of the produced potato seed tubers. In I Balkan symposium on vegetables and potatoes, 462, pp. 935–942.

  • Gul, Z., F. Qureshi, and Z. Jamal. 2020. Growth and minituber yield response of potato plantlets in micropropagation to different plant spacing under greenhouse conditions. International Journal of Agriculture Environment and Food Sciences 4 (3): 271–277.

    Article  Google Scholar 

  • Haverkort, A.J., and A. Verhagen. 2008. Climate change and its repercussions for the potato supply chain. Potato Research 51 (3–4): 223–237.

    Article  Google Scholar 

  • Hossain, M.A., A. Al-Mahmud, M.A. Al-Mamun, M. Shamimuzzaman, and M.M. Rahman. 2015. Optimization of minituber size and planting distance for the breeder seed production of potato. American Journal of Agriculture and Forestry 3 (2): 58–64.

    Article  Google Scholar 

  • Karafyllidis, D.I., D.N. Georgakis, N.I. Stavropoulos, I.A. Vezyroglou, and E.X. Nianiou. 1997. Effect of planting density and size of potato minitubers on their yielding capacity. Acta Horticulturae 462: 943–949.

    Article  Google Scholar 

  • Mangani, R., U. Mazarura, T.A. Mtaita, and A. Shayanowako. 2015. Growth, yield and quality responses to plant spacing in irish potato: a review. African Journal of Agricultural Research 10 (7): 727–730.

    Article  Google Scholar 

  • Ozkaynak, E. 2021. Tuber size effects on yield and number of potato minitubers of commercial varieties in a greenhouse production system. Turkish Journal of Field Crops 26 (1): 123–128.

    Google Scholar 

  • Santos, B.M., and P.R. Rodriguez. 2008. Optimum in-row distances for potato minituber production. HortTechnology 18 (3): 403–406.

    Article  Google Scholar 

  • Struik, P.C. 2007. The canon of potato science: Minitubers. Potato Research 50 (3–4): 305–308.

    Article  Google Scholar 

  • Tarkalson, D.D., B.A. King, D.L. Bjorneberg, and J.P. Taberna Jr. 2012. Effects of planting configuration and in-row plant spacing on photosynthetically active radiation interception for three irrigated potato cultivars. Potato Research 55: 41–58.

    Article  CAS  Google Scholar 

  • Vander Zaag, P., A.L. Demagante, and E.E. Ewing. 1990. Influence of plant spacing on potato (Solanum tuberosum L.) morphology, growth and yield under two contrasting environments. Potato Research 33: 313–323.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Konya Şeker A.Ş. This research paper is a part of PhD thesis of the first author. The authors also thanks to Dr. Muhammad Naeem for statistical analysis of data and critical reading of the final draft.

Author information

Authors and Affiliations

Authors

Contributions

M.E. Çalışkan designed and supervised the study. A. Onaran conducted field experiments, collected data, performed data analysis, and wrote the first draft of the manuscript. Both authors critically edited and approved the manuscript for publication.

Corresponding author

Correspondence to Ali Onaran.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onaran, A., Çalışkan, M.E. Optimization and Economic Perspective of Planting Density and Minituber Size in Potato Seed Production. Am. J. Potato Res. 100, 169–183 (2023). https://doi.org/10.1007/s12230-022-09902-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-022-09902-2

Keywords

Navigation