Skip to main content

Advertisement

Log in

IgG antibody response to pneumococcal-conjugated vaccine (Prevenar®13) in children with immunodeficiency disorders

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Measurement of anti-pneumococcal capsular polysaccharides (anti-PnPs) IgG titers is an important tool in the immunologic assessment of patients with suspected immunodeficiency disorders (ID) to reduce the morbi-mortality and minimize severe infections. Retrospectively, we studied the relationship among anti-PnPs IgG response to 3 doses of Prevenar®13, levels of immune system components, leukocyte populations, and clinical data in children with ID. Serum samples were collected at least 4 weeks post vaccination. Subsequently, multi-serotype enzyme-linked immunosorbent assay (ELISA) was performed. Eighty-seven children (under 12 years) were enrolled. Primary immunodeficiency disorder (PID) was the most common disorder (45) followed by possible immunodeficiency disorder (POID) (19), secondary immunodeficiency disorder (SID) (15), and mixed immunodeficiency disorder (MID) (8). The median age was 3 (1.50–5.33) years, 65% of patients were male. Deficient production of anti-PnPs IgG (titer ≤ 50 mg/L) was detected in 47 patients (54%), especially in the MID group, all of them under immunosuppressive therapy. In PCV13 responders, the mean of leukocyte population levels was higher with statistically significance differences in CD4 + /CD8 + T lymphocytes (p = 0.372, p = 0.014) and CD56 + /CD16 + NK (p = 0.016). Patients with previous bone marrow transplantation were the worst PCV13 responders. Pneumococcal IgG antibody titers (post-vaccination) along with clinical and analytical markers represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCV:

Pneumococcal-conjugated vaccine

PPSV:

Pneumococcal polysaccharide vaccine

PID:

Primary immunodeficiency disorder

POID:

Possible immunodeficiency disorder

SID:

Secondary immunodeficiency disorder

MID:

Mixed immunodeficiency disorder

ID:

Immunodeficiency disorder

IT:

Immunosuppressive therapy

References

  1. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A et al (2020) Human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee. J Clin Immunol 40(1):24–64. https://doi.org/10.1007/s10875-019-00737-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Modell V, Knaus M, Modell F, Roifman C, Orange J, Notarangelo LD (2014) Global overview of primary immunodeficiencies: a report from Jeffrey modell centers worldwide focused on diagnosis, treatment, and discovery. Immunol Res 60(1):132–144. https://doi.org/10.1007/s12026-014-8498-z

    Article  CAS  PubMed  Google Scholar 

  3. Brodszki N, Frazer-Abel A, Grumach AS, Kirschfink M, Litzman J, Perez E et al (2020) European society for immunodeficiencies (ESID) and European reference network on rare primary immunodeficiency, autoinflammatory and autoimmune diseases (ERN RITA) complement guideline: deficiencies, diagnosis, and management. J Clin Immunol 40(4):576–591. https://doi.org/10.1007/s10875-020-00754-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C (2012) Morbidity and mortality in common variable immune deficiency over 4 decades. Blood 119(7):9. https://doi.org/10.1182/blood-2011-09-377945

    Article  CAS  Google Scholar 

  5. van Wilder P, Odnoletkova I, Mouline M, de Vries E (2021) Immunoglobulin replacement therapy is critical and cost-effective in increasing life expectancy and quality of life in patients suffering from common variable immunodeficiency disorders (CVID): A health-economic assessment. PLoS ONE 16(3):e0247941. https://doi.org/10.1371/journal.pone.0247941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chinn IK, Orange JS (2019) Immunodeficiency disorders. Pediatr Rev 40(5):229–242. https://doi.org/10.1542/pir.2017-0308

    Article  PubMed  Google Scholar 

  7. Capolunghi F, Cascioli S, Giorda E, Rosado MM, Plebani A, Auriti C et al (2008) CpG drives human transitional b cells to terminal differentiation and production of natural antibodies. J Immunol 180(2):800–808. https://doi.org/10.4049/jimmunol.180.2.800

    Article  CAS  PubMed  Google Scholar 

  8. Oliveira JB, Fleisher TA (2010) Laboratory evaluation of primary immunodeficiencies. J Allergy Clin Immunol 125(2):S297–S305. https://doi.org/10.1016/j.jaci.2009.08.043

    Article  PubMed  Google Scholar 

  9. Pulvirenti F, Milito C, Cavaliere FM, Mezzaroma I, Cinetto F, Quinti I (2020) IGA antibody induced by immunization with pneumococcal polysaccharides is a prognostic tool in common variable immune deficiencies. Front Immunol 11:1283. https://doi.org/10.3389/fimmu.2020.01283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cavaliere FM, Milito C, Martini H, Schlesier M, Dräger R, Schütz K et al (2013) Quantification of IgM and IgA anti-pneumococcal capsular polysaccharides by a new ELISA assay: a valuable diagnostic and prognostic tool for common variable immunodeficiency. J Clin Immunol 33(4):838–846. https://doi.org/10.1007/s10875-012-9856-z

    Article  CAS  PubMed  Google Scholar 

  11. Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S et al (2009) Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol 27:199–227. https://doi.org/10.1146/annurev.immunol.021908.132649

    Article  CAS  PubMed  Google Scholar 

  12. Álvarez García FJ, Cilleruelo Ortega MJ, Álvarez Aldeán J, Garcés-Sánchez M, Garrote Llanos E, Iofrío de Arce A et al (2022) Immunization schedule of the pediatric spanish association: 2022 recommendations. Anales de Pediatría (English Edition) 96(1):59.e1-59.e10. https://doi.org/10.1016/j.anpede.2021.11.002

    Article  PubMed  Google Scholar 

  13. Kersseboom R, Brooks A, Weemaes C (2011) Educational paper: syndromic forms of primary immunodeficiency. Eur J Pediatr 170(3):295–308. https://doi.org/10.1007/s00431-011-1396-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schauer U, Stemberg F, Rieger CHL, Büttner W, Borte M, Schubert S et al (2003) Levels of antibodies specific to tetanus toxoid, Haemophilus influenzae type b, and pneumococcal capsular polysaccharide in healthy children and adults. Clin Vaccine Immunol 10(2):202–207. https://doi.org/10.1128/CDLI.10.2.202-207.2003

    Article  CAS  Google Scholar 

  15. Parker AR, Allen S, Harding S (2016) Concentration of anti-pneumococcal capsular polysaccharide IgM, IgG and IgA specific antibodies in adult blood donors. Pract Lab Med 5:1–5. https://doi.org/10.1016/j.plabm.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jang JH, Woo SD, Lee Y, Shin YS, Ye YM, Park HS (2021) Establishment of reference intervals of serum immunoglobulins in healthy korean adults. Allergy Asthma Immunol Res 13(4):671–674. https://doi.org/10.4168/aair.2021.13.4.671

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tembe N, Joaquim O, Alfai E, Sitoe N, Viegas E, Macovela E et al (2014) Reference values for clinical laboratory parameters in young adults in Maputo, Mozambique. PLoS ONE 9(5):e97391

    Article  PubMed  PubMed Central  Google Scholar 

  18. Das Gupta A, Ochani Z (2006) Single platform enumeration of lymphocyte subsets in healthy Indians aged between 18 and 49 years. Cytometry B Clin Cytom 70:361–362

    Article  CAS  PubMed  Google Scholar 

  19. Tosato F, Bucciol G, Pantano G, Putti MC, Sanzari MC, Basso G et al (2015) Lymphocytes subsets reference values in childhood: lymphocytes subsets reference values in childhood. Cytometry 87(1):81–85. https://doi.org/10.1002/cyto.a.22520

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Prat M, Vila-Pijoan G, Martos Gutierrez S, Gala Yerga G, García Guantes E, Martínez-Gallo M et al (2018) Age-specific pediatric reference ranges for immunoglobulins and complement proteins on the Optilite™ automated turbidimetric analyzer. J Clin Lab Anal 32(6):e22420. https://doi.org/10.1002/jcla.22420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu BT, Yu X, Jones TR, Kirch C, Harris S, Hildreth SW et al (2005) Approach to validating an opsonophagocytic assay for Streptococcus pneumoniae. Clin Vaccine Immunol 12(2):287–295. https://doi.org/10.1128/CDLI.12.2.287-295.2005

    Article  CAS  Google Scholar 

  22. Jódar L, Butler J, Carlone G, Dagan R, Goldblatt D, Käyhty H et al (2003) Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants. Vaccine 21(23):3265–3272. https://doi.org/10.1016/S0264-410X(03)00230-5

    Article  CAS  PubMed  Google Scholar 

  23. LaFon DC, Nahm MH (2018) Measuring immune responses to pneumococcal vaccines. J Immunol Methods 461:37–43. https://doi.org/10.1016/j.jim.2018.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boyle JM, Buckley RH (2007) Population prevalence of diagnosed primary immunodeficiency diseases in the United States. J Clin Immunol 27(5):497–502. https://doi.org/10.1007/s10875-007-9103-1

    Article  CAS  PubMed  Google Scholar 

  25. Abolhassani H, Azizi G, Sharifi L, Yazdani R, Mohsenzadegan M, Delavari S et al (2020) Global systematic review of primary immunodeficiency registries. Expert Rev Clin Immunol 16(7):717–732. https://doi.org/10.1080/1744666X.2020.1801422

    Article  CAS  PubMed  Google Scholar 

  26. Robbins A, Bahuaud M, Hentzien M, Maestraggi Q, Barbe C, Giusti D et al (2021) The 13-valent pneumococcal conjugate vaccine elicits serological response and lasting protection in selected patients with primary humoral immunodeficiency. Front Immunol 12:697128. https://doi.org/10.3389/fimmu.2021.697128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pittet LF, Posfay-Barbe KM (2021) Vaccination of immune compromised children—an overview for physicians. Eur J Pediatr 180(7):2035–2047. https://doi.org/10.1007/s00431-021-03997-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Froneman C, Kelleher P, José RJ (2021) Pneumococcal vaccination in immunocompromised hosts: an update. Vaccines 9(6):536. https://doi.org/10.3390/vaccines9060536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Le Ng X, Alikhan M, Stark JM, Mosquera RA, Shahrukh Hashmi S, Gonzales T et al (2019) Comparison of pneumococcal vaccination response in children with sickle cell disease: HbSS and HbSC. Allergol Immunopathol 47(6):564–569. https://doi.org/10.1016/j.aller.2019.04.003

    Article  Google Scholar 

  30. Kuronuma K, Takahashi H (2019) Immunogenicity of pneumococcal vaccines in comorbid autoimmune and chronic respiratory diseases. Hum Vaccin Immunother 15(4):859–862. https://doi.org/10.1080/21645515.2018.1564443

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Aalst M, Langedijk AC, Spijker R, de Bree GJ, Grobusch MP, Goorhuis A (2018) The effect of immunosuppressive agents on immunogenicity of pneumococcal vaccination: a systematic review and meta-analysis. Vaccine 36(39):5832–5845. https://doi.org/10.1016/j.vaccine.2018.07.039

    Article  CAS  PubMed  Google Scholar 

  32. Erguven M, Kaya B, Hamzah OY, Tufan F (2011) Evaluation of immune response to hepatitis a vaccination and vaccine safety in juvenile idiopathic arthritis. J Chin Med Assoc 74(5):205–208. https://doi.org/10.1016/j.jcma.2011.03.004

    Article  PubMed  Google Scholar 

  33. Aikawa NE, Campos LM, Goldenstein-Schainberg C, Saad CG, Ribeiro AC, Bueno C et al (2013) Effective seroconversion and safety following the pandemic influenza vaccination (anti-H1N1) in patients with juvenile idiopathic arthritis. Scand J Rheumatol 42(1):34–40. https://doi.org/10.3109/03009742.2012.709272

    Article  CAS  PubMed  Google Scholar 

  34. van den Bossche WBL, Rykov K, Teodosio C, ten Have BLEF, Knobben BAS, Sietsma MS et al (2018) Flow cytometric assessment of leukocyte kinetics for the monitoring of tissue damage. Clin Immunol 197:224–230. https://doi.org/10.1016/j.clim.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  35. Blanchard-Rohner G (2021) Vaccination in children with autoimmune disorders and treated with various immunosuppressive regimens: a comprehensive review and practical guide. Front Immunol 2(12):711637. https://doi.org/10.3389/fimmu.2021.711637

    Article  CAS  Google Scholar 

  36. Liang F, Loré K (2016) Local innate immune responses in the vaccine adjuvant-injected muscle. Clin Trans Immunol 5(4):e74. https://doi.org/10.1038/cti.2016.19

    Article  CAS  Google Scholar 

  37. Zimmermann P, Curtis N (2019) Factors that influence the immune response to vaccination. Clin Microbiol Rev 32(2):e00084-e118. https://doi.org/10.1128/CMR.00084-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonzalez-Rodriguez AP, Contesti J, Huergo-Zapico L, Lopez-Soto A, Fernández-Guizán A, Acebes-Huerta A et al (2010) Prognostic significance of CD8 and CD4 T cells in chronic lymphocytic leukemia. Leuk Lymphoma 51(10):1829–1836. https://doi.org/10.3109/10428194.2010.503820

    Article  CAS  PubMed  Google Scholar 

  39. Furuya Y, Kirimanjeswara GS, Roberts S, Racine R, Wilson-Welder J, Sanfilippo AM et al (2017) Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice. Vaccine 35(37):4997–5005. https://doi.org/10.1016/j.vaccine.2017.07.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schroeder HW, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2):S41–S52. https://doi.org/10.1016/j.jaci.2009.09.046

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zen Y (2020) Pathological characteristics and diagnosis of IgG4-related disease. La Presse Médicale 49(1):104014. https://doi.org/10.1016/j.lpm.2020.104014

    Article  PubMed  Google Scholar 

  42. Maslinska M, Dmowska-Chalaba J, Jakubaszek M (2022) The role of IgG4 in autoimmunity and rheumatic diseases. Front Immunol 25(12):787422. https://doi.org/10.3389/fimmu.2021.787422

    Article  CAS  Google Scholar 

  43. Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD (2019) Hematopoietic stem cell transplantation in primary immunodeficiency diseases: current status and future perspectives. Front Pediatr 7:295. https://doi.org/10.3389/fped.2019.00295

    Article  PubMed  PubMed Central  Google Scholar 

  44. Trampert DC, Hubers LM, van de Graaf SFJ, Beuers U (1864) 2018 On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease. Biochimica et Biophysica Acta (BBA) 4:1401–1409. https://doi.org/10.1016/j.bbadis.2017.07.038

    Article  CAS  Google Scholar 

  45. Sánchez-Ramón S, Bermúdez A, González-Granado LI, Rodríguez-Gallego C, Sastre A, Soler-Palacín P et al (2019) Primary and secondary immunodeficiency diseases in oncohaematology: warning signs, diagnosis, and management. Front Immunol 10:586. https://doi.org/10.3389/fimmu.2019.00586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Olsson RF, Hagelberg S, Schiller B, Ringdén O, Truedsson L, Åhlin A (2016) Allogeneic hematopoietic stem cell transplantation in the treatment of human C1q deficiency: the Karolinska experience. Transplantation 100(6):1356–1362. https://doi.org/10.1097/TP.0000000000000975

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

NonE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Garrido-Jareño.

Ethics declarations

Conflict of interest

NonE.

Trial registration

Not applicable.

Additional information

Edited by Volkhard A.J. Kempf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido-Jareño, M., Sahuquillo-Arce, J.M., Rodríguez-Vega, H. et al. IgG antibody response to pneumococcal-conjugated vaccine (Prevenar®13) in children with immunodeficiency disorders. Med Microbiol Immunol 212, 93–102 (2023). https://doi.org/10.1007/s00430-022-00759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-022-00759-0

Keywords

Navigation