Skip to main content
Log in

Method of alternating projections for the general absolute value equation

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

A novel approach for solving the general absolute value equation \(Ax+B|x| = c\) where \(A,B\in \textrm{I}\! \textrm{R}^{m\times n}\) and \(c\in \textrm{I}\! \textrm{R}^m\) is presented. We reformulate the equation as a nonconvex feasibility problem which we solve via the method of alternating projections (MAP). The fixed points set of the alternating projections map is characterized under nondegeneracy conditions on A and B. Furthermore, we prove local linear convergence of the algorithm. Unlike most of the existing approaches in the literature, the algorithm presented here is capable of handling problems with \(m\ne n\), both theoretically and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rohn, J.: A theorem of alternatives for the equation \(Ax+B|x| = b\). Linear Multilinear Algebra 52, 421–426 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caccetta, L., Qu, B., Zhou, G.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48, 45–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cruz, J.Y.B., Ferreira, O.P., Prudente, L.F.: On the global convergence of the inexact semi-smooth Newton method for absolute value equation. Comput. Optim. Appl. 65, 93–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Haghani, F.K.: On generalized Traub’s method for absolute value equations. J. Optim. Theory Appl. 166, 619–625 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu, S.-L., Huang, Z.-H.: A note on absolute value equations. Optim. Lett. 4, 417–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mangasarian, O.L.: Absolute value equation solution via concave minimization. Optim. Lett. 1, 3–8 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mangasarian, O.L.: A generalized Newton method for absolute value equation. Optim. Lett. 3, 101–108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mangasarian, O.L.: A hybrid algorithm for solving the absolute value equation. Optim. Lett. 9, 1469–1474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419, 359–367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8, 35–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, C., Wei, Q.J.: Global and finite convergence of a generalized Newton method for absolute value equations. J. Optim. Theory Appl. 143, 391–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cottle, R.W., Dantzig, G.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1, 103–125 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cottle, R.W., Pang, J.-S., Stone, R.-E.: The Linear Complementarity Problem. Academic Press, New York (1992)

    MATH  Google Scholar 

  14. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36, 43–53 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44, 363–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126, 39–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, S.-L., Li, C.-X.: A note on unique solvability of the absolute value equation. Optim. Lett. 14, 1957–1960 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saheya, B., Yu, C.-H., Chen, J.-S.: Numerical comparisons based on four smoothing functions for absolute value equation. J. Appl. Math. Comput. 56, 131–149 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Salkuyeh, D.K.: The Picard-HSS iteration method for absolute value equation. Optim. Lett. 8, 2191–2202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, C., Yu, D., Han, D.: An inexact Douglas–Rachford splitting method for solving absolute value equations. arXiv:2103.09398 [math.OC] (2021)

  21. Ke, Y.-F., Ma, C.-F.: SOR-like iteration method for solving absolute value equations. Appl. Math. Comput. 311, 195–202 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Edalatpour, V., Hezari, D., Salkuyeh, D.K.: A generalization of the Gauss-Seidel iteration method for solving absolute value equations. Appl. Math. Comput. 293, 156–167 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Abdallah, L., Haddou, M., Migot, T.: Solving absolute value equation using complementarity and smoothing functions. J. Comput. Appl. Math. 327, 196–207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dao, M.N., Tam, M.K.: Union averaged operators with applications to proximal algorithms for min-convex functions. J. Optim. Theory Appl. 181, 61–94 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bauschke, H.H., Noll, D.: On the local convergence of the Douglas–Rachford algorithm. Arch. Math. 102, 589–600 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tam, M.K.: Algorithms based on unions of nonexpansive maps. Optim. Lett. 12, 1019–1027 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semialgebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137, 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bauschke, H.H., Kruk, S.G.: Reflection-projection method for convex feasibility problems with an obtuse cone. J. Optim. Theory Appl. 120, 503–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bregman, L.M.: The method of successive projections for finding a common point of convex sets. Sov. Math. Dokl. 162, 688–692 (1965)

    MATH  Google Scholar 

  30. Alcantara, J.H., Chen, J.-S.: A novel generalization of the natural residual function and a neural network approach for the NCP. Neurocomputing 413, 368–382 (2020)

    Article  Google Scholar 

  31. Galantai, A.: Properties and construction of NCP functions. Comput. Optim. Appl. 52, 805–824 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Alcantara, J.H., Lee, C.-H., Nguyen, C.T., Chang, Y.-L., Chen, J.-S.: On construction of new NCP functions. Oper. Res. Lett. 48, 115–121 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hesse, R., Luke, D.R., Neumann, P.: Alternating projections and Douglas–Rachford for sparse affine feasibility. IEEE Trans. Signal Process. 62, 4868–4881 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    MATH  Google Scholar 

  35. Scholtes, S.: Introduction to Piecewise Differentiable Functions. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  36. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  37. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9, 485–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Danillidis, A., Luke, D.R., Tam, M.K.: Characterizations of super-regularity and its variants. In: Bauschke, H.H., Burachik, R.S., Luke, D.R. (eds.) Splitting Algorithms, Modern Operator Theory, and Applications, pp. 137–152. Springer, Berlin (2019)

    Chapter  Google Scholar 

  39. Tam, M.K.: Regularity properties of non-negative sparsity sets. J. Math. Anal. Appl. 447, 758–777 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kanzow, C.: Some noninterior continuation methods for linear complementarity problems. SIAM J. Matrix Anal. Appl. 17, 851–868 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. H. Alcantara and J.-S. Chen’s research is supported by Ministry of Science and Technology, Taiwan. M. K. Tam is supported in part by DE200100063 from the Australian Research Council. This work was conducted while J. H. Alcantara was a postdoctoral fellow at National Taiwan Normal University. The authors would like to thank the anonymous referee for the valuable feedback and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jein-Shan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcantara, J.H., Chen, JS. & Tam, M.K. Method of alternating projections for the general absolute value equation. J. Fixed Point Theory Appl. 25, 39 (2023). https://doi.org/10.1007/s11784-022-01026-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-022-01026-8

Keywords

Mathematics Subject Classification

Navigation