Skip to main content
Log in

The Structure of N-(Chloromethyl)Strychninium Chloride, a Spontaneously Crystallized Product Relevant to Analytical Chemistry, Bioprospecting, and Chiral Separations

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Strychnine is well known as a highly toxic alkaloid derived from the plant Strychnos nux-vomica. It has been applied for chiral separations as a resolving agent for co-crystallizations, as a standard for chromatographic separations, as a rodenticide, as a natural therapy and stimulant, and as a poisonous plot device in works of fiction. Dissolving strychnine into the common organic solvent dichloromethane results in the spontaneous crystallization of the title compound N-(chloromethyl)strychninium chloride. Crystals of the compound were isolated in the orthorhombic space group P212121 with a = 7.6819(2) Å, b = 7.9621(2) Å, c = 30.7170(9) Å, α = 90°, β = 90°, γ = 90°. The crystal structure has bilayers of N-(chloromethyl)strychninium cations with corresponding bilayers of chloride ions interacting to the cations through C–H hydrogen bonds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

CCDC-1,815,572 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at http://www.ccdc.cam.ac.uk/ or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033; email: deposit@ccdc.cam.ac.uk.

References

  1. Buckingham J (2007) Bitter nemesis: the intimate history of strychnine. CRC Press, Boca Ratonhttps://doi.org/10.1201/9781420053166

    Book  Google Scholar 

  2. McGarry RC, McGarry P (1999) Please pass the strychnine: the art of victorian pharmacy. Can Med Assoc J 161(12):1556–1558

    CAS  Google Scholar 

  3. Rosen DM (2008) Dope: a history of performance enhancement in sports from the nineteenth century to today. Praeger, Westport

    Google Scholar 

  4. Harris T, Sport (2008) Almost everything you ever wanted to know. Yellow Jersey, London

    Google Scholar 

  5. Mallon B, Heijmans J (2011) Historical dictionary of the olympic movement, historical dictionaries of sports, 4th edn. The Scarecrow Press, Plymouth

    Google Scholar 

  6. Akbar S, Khan SA, Masood A, Iqbal M (2010) Use of Strychnos Nux-Vomica (azraqi) seeds in unani system of medicine: role of detoxification. Afr J Tradit Complement Altern Med 7(4):286–290. https://doi.org/10.4314/ajtcam.v7i4.56689

    Article  PubMed  PubMed Central  Google Scholar 

  7. State Pharmacopoeia Commission of the People’s Republic of China (2015) Pharmacopoeia of the people’s Republic of China. Chemical Industry Press, Beijing

    Google Scholar 

  8. Wang Y, Chen A (2013) Crystallization-based separation of enantiomers. In: Andrushko V, Andrushko N (eds) Stereoselective synthesis of drugs and natural products. Wiley, Hobokenhttps://doi.org/10.1002/9781118596784.ssd056

    Chapter  Google Scholar 

  9. Jaen JC (2003) Brucine. In: Paquette LA (ed) Chiral reagents for asymmetric synthesis: handbook of reagents for organic synthesis. Wiley, New York

    Google Scholar 

  10. Smith G, Wermuth UD, Williams ML (2012) Resolution of the chiral (1R,2S) enantiomer of cis-cyclohexane-1,2-dicarboxylic acid in the brucinium salt 2,3-dimethoxy-10-oxostrychnidinium (1R,2S)-2-carboxycyclohexane-1-carboxylate dihydrate. J Chem Crystallogr 42(6):555–559. https://doi.org/10.1007/s10870-012-0278-9

    Article  CAS  Google Scholar 

  11. Brands KMJ, Davies AJ (2006) Crystallization-induced diastereomer transformations. Chem Rev 106(7):2711–2733. https://doi.org/10.1021/cr0406864

    Article  CAS  PubMed  Google Scholar 

  12. Philippe G, Angenot L, Tits M, Frederich M (2004) About the toxicity of some Strychnos species and their alkaloids. Toxicon 44(4):405–416. https://doi.org/10.1016/j.toxicon.2004.05.006

    Article  CAS  PubMed  Google Scholar 

  13. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr B 72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  14. Ma FS, Wu XJ, Yu Y, Tong SQ, Liang Y, Fang JQ et al (2016) Preparative separation and purification of two highly polar alkaloids derived from Semen Strychni extracted with dichloromethane by high-speed countercurrent chromatography. J Sep Sci 39(19):3709–3715. https://doi.org/10.1002/jssc.201600352

    Article  CAS  PubMed  Google Scholar 

  15. Sheldrick GM (2015) SHELXT: integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  16. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  17. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  18. Cottrell SJ, Olsson TSG, Taylor R, Cole JC, Liebeschuetz JW (2012) Validating and understanding ring conformations using small molecule crystallographic data. J Chem Inf Model 52(4):956–962. https://doi.org/10.1021/ci200439d

    Article  CAS  PubMed  Google Scholar 

  19. Bruno IJ, Cole JC, Kessler M, Luo J, Motherwell WDS, Purkis LH et al (2004) Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Comp Sci 44(6):2133–2144. https://doi.org/10.1021/ci049780b

    Article  CAS  Google Scholar 

  20. Aakeröy CB, Evans TA, Seddon KR, Pálinkó I (1999) The C–H···Cl hydrogen bond: does it exist? New J Chem 23(2):145–152. https://doi.org/10.1039/A809309A

    Article  Google Scholar 

  21. Thallapally PK, Nangia A (2001) A Cambridge structural database analysis of the C-H···Cl interaction: C-H···Cl- and C-H···Cl-M often behave as hydrogen bonds but C-H···Cl-C is generally a van der Waals interaction. CrystEngComm. https://doi.org/10.1039/b102780h

    Article  Google Scholar 

  22. Berkman CE, Fernandez EJ, Thompson CM, Pavkovic SF (1993) Structure of 19-methylstrychninium (S)-(S-[(R)-1,2-Di(ethoxycarbonyl)ethyl] O-methyl phosphorodithioate). Acta Crystallogr C 49:554–556. https://doi.org/10.1107/S0108270192007637

    Article  Google Scholar 

  23. Gould RO, Walkinshaw MD (1984) Molecular recognition in model crystal complexes: the resolution of D-Amino and L-Amino-acids. J Am Chem Soc 106(25):7840–7842. https://doi.org/10.1021/ja00337a031

    Article  CAS  Google Scholar 

  24. Mostad A (1985) Structural study of the strychnine molecule in crystals of the free base and of the nitric-acid complex. Acta Chem Scand B 39(9):705–716. https://doi.org/10.3891/acta.chem.scand.39b-0705

    Article  Google Scholar 

  25. Ghosh R, Roychowdhury P, Chattopadhyay D, Iitaka Y (1989) Structure of strychnine hydrochloride sesquihydrate. Acta Crystallogr C 45:1794–1797. https://doi.org/10.1107/s0108270189003483

    Article  PubMed  Google Scholar 

  26. Bialonska A, Ciunik Z (2005) Crystal structure of strychninium chloride dihydrate: hidden helix in the water/anion tape. J Mol Struct 779(1–3):38–42. https://doi.org/10.1016/j.molstruc.2005.07.007

    Article  CAS  Google Scholar 

  27. Berger S, Sicker D, Strychnine (2009) Classics in spectroscopy. Wiley-VCH Verlay GmbH & Co, Weinheim, pp 103–128

    Google Scholar 

  28. Klemperer ME, Warren FL (1955) Chem Ind 1955:1553

    Google Scholar 

  29. Caws AC, Foster GE (1956) A source of error in the assay of strychnine salts and preparations containing strychnine. J Pharm Pharmacol 8(10):790–798. https://doi.org/10.1111/j.2042-7158.1956.tb12210.x

    Article  CAS  PubMed  Google Scholar 

  30. Caws AC, Foster GE (1957) The purity of Chloroform Bp. J Pharm Pharmacol 9(12):824–833. https://doi.org/10.1111/j.2042-7158.1957.tb12343.x

    Article  CAS  PubMed  Google Scholar 

  31. Coomber DI, Rose BA (1959) The reaction of bases with chloroform. J Pharm Pharmacol 11(11):703–704. https://doi.org/10.1111/j.2042-7158.1959.tb12616.x

    Article  CAS  PubMed  Google Scholar 

  32. Phillipson JD, Bisset NG (1972) Artifacts produced by Chloroform and Methylene Dichloride during extraction of Amines and Alkaloids.1. Quaternization and oxidation of strychnine and brucine during plant extraction. Phytochemistry 11(8):2547–2553. https://doi.org/10.1016/S0031-9422(00)88534-9

    Article  CAS  Google Scholar 

  33. Shi YS, Liu YB, Ma SG, Li L, Qu J, Li Y et al (2014) Four new minor alkaloids from the seeds of Strychnos nux-vomica. Tetrahedron Lett 55(48):6538–6542. https://doi.org/10.1016/j.tetlet.2014.09.127

    Article  CAS  Google Scholar 

  34. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJM (1998) Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol Pharmacol 53(3):573–589. https://doi.org/10.1124/mol.53.3.573

    Article  CAS  PubMed  Google Scholar 

  35. Gharagozloo P, Lazareno S, Popham A, Birdsall NJM (1999) Allosteric interactions of quaternary strychnine and brucine derivatives with muscarinic acetylcholine receptors. J Med Chem 42(3):438–445. https://doi.org/10.1021/jm970799y

    Article  CAS  PubMed  Google Scholar 

  36. Birdsall NJM, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M (1999) Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol Pharmacol 55(4):778–786

    CAS  PubMed  Google Scholar 

  37. Griffin MT, Hsu JCH, Shehnaz D, Ehlert FJ (2003) Comparison of the pharmacological antagonism of M-2 and M-3 muscarinic receptors expressed in isolation and in combination. Biochem Pharmacol 65(8):1227–1241. https://doi.org/10.1016/S0006-2952(03)00068-6

    Article  CAS  PubMed  Google Scholar 

  38. Jensen AA, Gharagozloo P, Birdsall NJM, Zlotos DP (2006) Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha 7 nicotinic acetylcholine receptors. Eur J Pharmacol 539(1–2):27–33. https://doi.org/10.1016/j.ejphar.2006.04.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the muwinina people, the traditional owners of the land on which this research was conducted. The authors acknowledge the Central Science Laboratory at the University of Tasmania for access to their services. Additional unpublished datasets of the title compound were collected on the MX1 beamline at the Australian Synchrotron, part of ANSTO.

Funding

This research was supported under the Australian Research Council’s Discovery Early Career Research Award funding scheme (Project Number DE150100263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan L. Kilah.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, C.M., Kilah, N.L. The Structure of N-(Chloromethyl)Strychninium Chloride, a Spontaneously Crystallized Product Relevant to Analytical Chemistry, Bioprospecting, and Chiral Separations. J Chem Crystallogr 53, 379–385 (2023). https://doi.org/10.1007/s10870-022-00977-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00977-7

Keywords

Navigation